"""Audio transforms.""" # import torchaudio # import torchvision from torchvision.transforms import Compose, ToTensor import torchaudio.transforms as T # import imgaug.augmenters as iaa import numpy as np import torch class AddNoise(object): """Add noise to the waveform.""" def __init__(self, noise_level=0.1): self.noise_level = noise_level def __call__(self, waveform): noise = torch.randn_like(waveform) return waveform + self.noise_level * noise def __repr__(self): return self.__class__.__name__ + f"(noise_level={self.noise_level})" class ChangeVolume(object): """Change the volume of the waveform.""" def __init__(self, volume_factor=[0.6, 1.2]): self.volume_factor = volume_factor def __call__(self, waveform): return waveform * np.random.uniform(*self.volume_factor) def __repr__(self): return self.__class__.__name__ + f"(volume_factor={self.volume_factor})" def configure_transforms(cfg): """ Given a transform config (List[dict]), return a Compose object that applies the transforms in order. """ transform = [] for a in cfg: transform.append(eval(a["name"])(**a["args"])) return Compose(transform) class AudioClipsTransform: def __init__(self, audio_transform): """Applies image transform to each frame of each video clip.""" self.audio_transform = audio_transform def __call__(self, audio_clips): """ Args: audio_clips (list): list of audio clips, each tensor [1, M] where M is number of samples in each clip """ transformed_audio_clips = [self.audio_transform(x) for x in audio_clips] # transformed_audio_clips = [] # for clip in audio_clips: # transformed_clip = [self.audio_transform(x) for x in clip] # transformed_audio_clips.append(transformed_clip) return transformed_audio_clips def __repr__(self): return self.audio_transform.__repr__() class NumpyToTensor: def __call__(self, x): return torch.from_numpy(x).float() def __repr__(self): return self.__class__.__name__ + "()" # TODO: Might have to introduce normalisation # to have a consistent pipeline. class Wav2Vec2WaveformProcessor: def __init__(self, model_name="facebook/wav2vec2-base-960h", sr=16000): from transformers import Wav2Vec2Processor self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.sr = sr def __call__(self, x): x = self.processor( x, sampling_rate=self.sr, return_tensors="pt", ).input_values return x def define_audio_transforms(cfg_transform, augment=False): wave_transforms = cfg_transform["audio"]["wave"] wave_transforms_new = [] # Only pick augmentations if augment=True for t in wave_transforms: if "augmentation" not in t: wave_transforms_new.append(t) else: if augment and t["augmentation"]: wave_transforms_new.append(t) # print(wave_transforms_new) wave_transform = configure_transforms(wave_transforms_new) wave_transform = AudioClipsTransform(wave_transform) # wave_transform = configure_transforms( # cfg_transform["audio"]["wave"], # ) # wave_transform = AudioClipsTransform(wave_transform) # spec_transform = configure_transforms( # cfg_transform["audio"]["spec"], # ) # spec_transform = AudioClipsTransform(spec_transform) audio_transform = dict( wave=wave_transform, # spec=spec_transform, ) return audio_transform if __name__ == "__main__": # Testing it out # Raw waveform transform cfg = [ { "name": "AddNoise", "args": {"noise_level": 0.1}, }, { "name": "ChangeVolume", "args": {"volume_factor": [0.6, 1.2]}, }, ] transform = configure_transforms(cfg) x = torch.randn([1, 16000]) z = transform(x) print(x.shape, z.shape) import matplotlib.pyplot as plt fig, ax = plt.subplots(2, 1, figsize=(8, 4)) ax[0].plot(x[0].numpy()) ax[1].plot(z[0].numpy()) plt.savefig("waveform_transform.png") # Wav2Vec2 transform cfg = [ { "name": "Wav2Vec2WaveformProcessor", "args": {"model_name": "facebook/wav2vec2-base-960h", "sr": 16000}, }, ] transform = configure_transforms(cfg) x = torch.randn([4, 16000]) z = transform(x) print(x.shape, z.shape) # Spectrogram transform cfg = [ { "name": "T.FrequencyMasking", "args": {"freq_mask_param": 8}, }, { "name": "T.TimeMasking", "args": {"time_mask_param": 16}, }, ] transform = configure_transforms(cfg) x = torch.randn([1, 64, 251]) z = transform(x) print(x.shape, z.shape) fig, ax = plt.subplots(2, 1, figsize=(8, 4)) ax[0].imshow(x[0].numpy()) ax[1].imshow(z[0].numpy()) plt.savefig("spectrogram_transform.png")