Spaces:
Sleeping
Sleeping
Upload util.py with huggingface_hub
Browse files
util.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
<style>
|
3 |
+
.container {
|
4 |
+
max-width: 100% !important;
|
5 |
+
padding-left: 0 !important;
|
6 |
+
padding-right: 0 !important;
|
7 |
+
}
|
8 |
+
.header {
|
9 |
+
padding: 30px;
|
10 |
+
margin-bottom: 30px;
|
11 |
+
text-align: center;
|
12 |
+
font-family: 'Helvetica Neue', Arial, sans-serif;
|
13 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
14 |
+
}
|
15 |
+
.header h1 {
|
16 |
+
font-size: 36px;
|
17 |
+
margin-bottom: 15px;
|
18 |
+
font-weight: bold;
|
19 |
+
color: #333333; /* Explicitly set heading color */
|
20 |
+
}
|
21 |
+
.header h2 {
|
22 |
+
font-size: 24px;
|
23 |
+
margin-bottom: 10px;
|
24 |
+
color: #333333; /* Explicitly set subheading color */
|
25 |
+
}
|
26 |
+
.header p {
|
27 |
+
font-size: 18px;
|
28 |
+
margin: 5px 0;
|
29 |
+
color: #666666;
|
30 |
+
}
|
31 |
+
.blue-text {
|
32 |
+
color: #4a90e2;
|
33 |
+
}
|
34 |
+
/* Custom styles for slider container */
|
35 |
+
.slider-container {
|
36 |
+
background-color: white !important;
|
37 |
+
padding-top: 0.9em;
|
38 |
+
padding-bottom: 0.9em;
|
39 |
+
}
|
40 |
+
/* Add gap before examples */
|
41 |
+
.examples-holder {
|
42 |
+
margin-top: 2em;
|
43 |
+
}
|
44 |
+
/* Set fixed size for example videos */
|
45 |
+
.gradio-container .gradio-examples .gr-sample {
|
46 |
+
width: 240px !important;
|
47 |
+
height: 135px !important;
|
48 |
+
object-fit: cover;
|
49 |
+
display: inline-block;
|
50 |
+
margin-right: 10px;
|
51 |
+
}
|
52 |
+
.gradio-container .gradio-examples {
|
53 |
+
display: flex;
|
54 |
+
flex-wrap: wrap;
|
55 |
+
gap: 10px;
|
56 |
+
}
|
57 |
+
/* Ensure the parent container does not stretch */
|
58 |
+
.gradio-container .gradio-examples {
|
59 |
+
max-width: 100%;
|
60 |
+
overflow: hidden;
|
61 |
+
}
|
62 |
+
/* Additional styles to ensure proper sizing in Safari */
|
63 |
+
.gradio-container .gradio-examples .gr-sample img {
|
64 |
+
width: 240px !important;
|
65 |
+
height: 135px !important;
|
66 |
+
object-fit: cover;
|
67 |
+
}
|
68 |
+
</style>
|
69 |
+
"""
|
70 |
+
|
71 |
+
custom_html = custom_css + """
|
72 |
+
<div class="header">
|
73 |
+
<h1><span class="blue-text">The Sound of Water</span>: Inferring Physical Properties from Pouring Liquids</h1>
|
74 |
+
<p><a href='https://bpiyush.github.io/pouring-water-website/'>Project Page</a> |
|
75 |
+
<a href='https://github.com/bpiyush/SoundOfWater'>Github</a> |
|
76 |
+
<a href='#'>Paper</a> |
|
77 |
+
<a href='https://huggingface.co/datasets/bpiyush/sound-of-water'>Data</a>
|
78 |
+
<a href='https://huggingface.co/bpiyush/sound-of-water-models'>Models</a></p>
|
79 |
+
</div>
|
80 |
+
"""
|
81 |
+
|
82 |
+
tips = """
|
83 |
+
<div>
|
84 |
+
<br><br>
|
85 |
+
Please give us a 🌟 on <a href='https://github.com/bpiyush/SoundOfWater'>Github</a> if you like our work!
|
86 |
+
Tips to get better results:
|
87 |
+
<ul>
|
88 |
+
<li>Make sure there is not too much noise such that the pouring is audible.</li>
|
89 |
+
<li>The video is not used during the inference.</li>
|
90 |
+
</ul>
|
91 |
+
</div>
|
92 |
+
"""
|
93 |
+
|
94 |
+
import os
|
95 |
+
import sys
|
96 |
+
|
97 |
+
import gradio as gr
|
98 |
+
import torch
|
99 |
+
import numpy as np
|
100 |
+
import matplotlib.pyplot as plt
|
101 |
+
plt.rcParams["font.family"] = "serif"
|
102 |
+
import decord
|
103 |
+
import PIL, PIL.Image
|
104 |
+
import librosa
|
105 |
+
from IPython.display import Markdown, display
|
106 |
+
import pandas as pd
|
107 |
+
|
108 |
+
import shared.utils as su
|
109 |
+
import sound_of_water.audio_pitch.model as audio_models
|
110 |
+
import sound_of_water.data.audio_loader as audio_loader
|
111 |
+
import sound_of_water.data.audio_transforms as at
|
112 |
+
import sound_of_water.data.csv_loader as csv_loader
|
113 |
+
|
114 |
+
|
115 |
+
def read_html_file(file):
|
116 |
+
with open(file) as f:
|
117 |
+
return f.read()
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def define_axes(figsize=(13, 4), width_ratios=[0.22, 0.78]):
|
122 |
+
fig, axes = plt.subplots(
|
123 |
+
1, 2, figsize=figsize, width_ratios=width_ratios,
|
124 |
+
layout="constrained",
|
125 |
+
)
|
126 |
+
return fig, axes
|
127 |
+
|
128 |
+
|
129 |
+
def show_frame_and_spectrogram(frame, spectrogram, visualise_args, axes=None):
|
130 |
+
"""Shows the frame and spectrogram side by side."""
|
131 |
+
|
132 |
+
if axes is None:
|
133 |
+
fig, axes = define_axes()
|
134 |
+
else:
|
135 |
+
assert len(axes) == 2
|
136 |
+
|
137 |
+
ax = axes[0]
|
138 |
+
ax.imshow(frame, aspect="auto")
|
139 |
+
ax.set_title("Example frame")
|
140 |
+
ax.set_xticks([])
|
141 |
+
ax.set_yticks([])
|
142 |
+
ax = axes[1]
|
143 |
+
audio_loader.show_logmelspectrogram(
|
144 |
+
S=spectrogram,
|
145 |
+
ax=ax,
|
146 |
+
show=False,
|
147 |
+
sr=visualise_args["sr"],
|
148 |
+
n_fft=visualise_args["n_fft"],
|
149 |
+
hop_length=visualise_args["hop_length"],
|
150 |
+
)
|
151 |
+
|
152 |
+
|
153 |
+
def scatter_pitch(ax, t, f, s=60, marker="o", color="limegreen", label="Pitch"):
|
154 |
+
"""Scatter plot of pitch."""
|
155 |
+
ax.scatter(t, f, color=color, label=label, s=s, marker=marker)
|
156 |
+
ax.set_xlabel("Time (s)")
|
157 |
+
ax.set_ylabel("Frequency (Hz)")
|
158 |
+
ax.legend(loc="upper left")
|
159 |
+
|
160 |
+
|
161 |
+
# Load video frame
|
162 |
+
def load_frame(video_path):
|
163 |
+
vr = decord.VideoReader(video_path, num_threads=1)
|
164 |
+
frame = PIL.Image.fromarray(vr[0].asnumpy())
|
165 |
+
frame = audio_loader.crop_or_pad_to_size(frame, size=(270, 480))
|
166 |
+
return frame
|
167 |
+
|
168 |
+
|
169 |
+
def load_spectrogram(video_path):
|
170 |
+
y = audio_loader.load_audio_clips(
|
171 |
+
audio_path=video_path,
|
172 |
+
clips=None,
|
173 |
+
load_entire=True,
|
174 |
+
cut_to_clip_len=False,
|
175 |
+
**aload_args,
|
176 |
+
)[0]
|
177 |
+
S = audio_loader.librosa_harmonic_spectrogram_db(
|
178 |
+
y,
|
179 |
+
sr=visualise_args["sr"],
|
180 |
+
n_fft=visualise_args["n_fft"],
|
181 |
+
hop_length=visualise_args["hop_length"],
|
182 |
+
n_mels=visualise_args['n_mels'],
|
183 |
+
)
|
184 |
+
return S
|
185 |
+
|
186 |
+
|
187 |
+
# Load audio
|
188 |
+
visualise_args = {
|
189 |
+
"sr": 16000,
|
190 |
+
"n_fft": 400,
|
191 |
+
"hop_length": 320,
|
192 |
+
"n_mels": 64,
|
193 |
+
"margin": 16.,
|
194 |
+
"C": 340 * 100.,
|
195 |
+
"audio_output_fps": 49.,
|
196 |
+
"w_max": 100.,
|
197 |
+
"n_bins": 64,
|
198 |
+
}
|
199 |
+
aload_args = {
|
200 |
+
"sr": 16000,
|
201 |
+
"clip_len": None,
|
202 |
+
"backend": "decord",
|
203 |
+
}
|
204 |
+
|
205 |
+
|
206 |
+
cfg_backbone = {
|
207 |
+
"name": "Wav2Vec2WithTimeEncoding",
|
208 |
+
"args": dict(),
|
209 |
+
}
|
210 |
+
backbone = getattr(audio_models, cfg_backbone["name"])(
|
211 |
+
**cfg_backbone["args"],
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
cfg_model = {
|
216 |
+
"name": "WavelengthWithTime",
|
217 |
+
"args": {
|
218 |
+
"axial": True,
|
219 |
+
"axial_bins": 64,
|
220 |
+
"radial": True,
|
221 |
+
"radial_bins": 64,
|
222 |
+
"freeze_backbone": True,
|
223 |
+
"train_backbone_modules": [6, 7, 8, 9, 10, 11],
|
224 |
+
"act": "softmax",
|
225 |
+
"criterion": "kl_div",
|
226 |
+
}
|
227 |
+
}
|
228 |
+
|
229 |
+
|
230 |
+
def load_model():
|
231 |
+
model = getattr(audio_models, cfg_model["name"])(
|
232 |
+
backbone=backbone, **cfg_model["args"],
|
233 |
+
)
|
234 |
+
su.misc.num_params(model)
|
235 |
+
|
236 |
+
|
237 |
+
# Load the model weights from trained checkpoint
|
238 |
+
# NOTE: Be sure to set the correct path to the checkpoint
|
239 |
+
su.log.print_update("[:::] Loading checkpoint ", color="cyan", fillchar=".", pos="left")
|
240 |
+
# ckpt_dir = "/work/piyush/pretrained_checkpoints/SoundOfWater"
|
241 |
+
ckpt_dir = "./checkpoints"
|
242 |
+
ckpt_path = os.path.join(
|
243 |
+
ckpt_dir,
|
244 |
+
"dsr9mf13_ep100_step12423_real_finetuned_with_cosupervision.pth",
|
245 |
+
)
|
246 |
+
assert os.path.exists(ckpt_path), \
|
247 |
+
f"Checkpoint not found at {ckpt_path}."
|
248 |
+
print("Loading checkpoint from: ", ckpt_path)
|
249 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
250 |
+
msg = model.load_state_dict(ckpt)
|
251 |
+
print(msg)
|
252 |
+
return model
|
253 |
+
|
254 |
+
|
255 |
+
# Define audio transforms
|
256 |
+
cfg_transform = {
|
257 |
+
"audio": {
|
258 |
+
"wave": [
|
259 |
+
{
|
260 |
+
"name": "AddNoise",
|
261 |
+
"args": {
|
262 |
+
"noise_level": 0.001
|
263 |
+
},
|
264 |
+
"augmentation": True,
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"name": "ChangeVolume",
|
268 |
+
"args": {
|
269 |
+
"volume_factor": [0.8, 1.2]
|
270 |
+
},
|
271 |
+
"augmentation": True,
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"name": "Wav2Vec2WaveformProcessor",
|
275 |
+
"args": {
|
276 |
+
"model_name": "facebook/wav2vec2-base-960h",
|
277 |
+
"sr": 16000
|
278 |
+
}
|
279 |
+
}
|
280 |
+
],
|
281 |
+
"spec": None,
|
282 |
+
}
|
283 |
+
}
|
284 |
+
audio_transform = at.define_audio_transforms(
|
285 |
+
cfg_transform, augment=False,
|
286 |
+
)
|
287 |
+
|
288 |
+
# Define audio pipeline arguments
|
289 |
+
apipe_args = {
|
290 |
+
"spec_args": None,
|
291 |
+
"stack": True,
|
292 |
+
}
|
293 |
+
|
294 |
+
|
295 |
+
def load_audio_tensor(video_path):
|
296 |
+
# Load and transform input audio
|
297 |
+
audio = audio_loader.load_and_process_audio(
|
298 |
+
audio_path=video_path,
|
299 |
+
clips=None,
|
300 |
+
load_entire=True,
|
301 |
+
cut_to_clip_len=False,
|
302 |
+
audio_transform=audio_transform,
|
303 |
+
aload_args=aload_args,
|
304 |
+
apipe_args=apipe_args,
|
305 |
+
)[0]
|
306 |
+
return audio
|
307 |
+
|
308 |
+
|
309 |
+
def get_model_output(audio, model):
|
310 |
+
with torch.no_grad():
|
311 |
+
NS = audio.shape[-1]
|
312 |
+
duration = NS / 16000
|
313 |
+
t = torch.tensor([[0, duration]]).unsqueeze(0)
|
314 |
+
x = audio.unsqueeze(0)
|
315 |
+
z_audio = model.backbone(x, t)[0][0].cpu()
|
316 |
+
y_audio = model(x, t)["axial"][0][0].cpu()
|
317 |
+
return z_audio, y_audio
|
318 |
+
|
319 |
+
|
320 |
+
def show_output(frame, S, y_audio, z_audio):
|
321 |
+
# duration = S.shape[-1] / visualise_args["sr"]
|
322 |
+
# print(S.shape, y_audio.shape, z_audio.shape)
|
323 |
+
duration = librosa.get_duration(
|
324 |
+
S=S,
|
325 |
+
sr=visualise_args["sr"],
|
326 |
+
n_fft=visualise_args["n_fft"],
|
327 |
+
hop_length=visualise_args["hop_length"],
|
328 |
+
)
|
329 |
+
timestamps = np.linspace(0., duration, 25)
|
330 |
+
|
331 |
+
# Get timestamps at evaluation frames
|
332 |
+
n_frames = len(y_audio)
|
333 |
+
timestamps_eval = librosa.frames_to_time(
|
334 |
+
np.arange(n_frames),
|
335 |
+
sr=visualise_args['sr'],
|
336 |
+
n_fft=visualise_args['n_fft'],
|
337 |
+
hop_length=visualise_args['hop_length'],
|
338 |
+
)
|
339 |
+
# Get predicted frequencies at these times
|
340 |
+
wavelengths = y_audio @ torch.linspace(
|
341 |
+
0, visualise_args['w_max'], visualise_args['n_bins'],
|
342 |
+
)
|
343 |
+
f_pred = visualise_args['C'] / wavelengths
|
344 |
+
# Pick only those timestamps where we define the true pitch
|
345 |
+
indices = su.misc.find_nearest_indices(timestamps_eval, timestamps)
|
346 |
+
f_pred = f_pred[indices]
|
347 |
+
|
348 |
+
# print(timestamps, f_pred)
|
349 |
+
|
350 |
+
# Show the true/pref pitch overlaid on the spectrogram
|
351 |
+
fig, axes = define_axes()
|
352 |
+
show_frame_and_spectrogram(frame, S, visualise_args, axes=axes)
|
353 |
+
scatter_pitch(axes[1], timestamps, f_pred, color="white", label="Estimated pitch", marker="o", s=70)
|
354 |
+
axes[1].set_title("True and predicted pitch overlaid on the spectrogram")
|
355 |
+
# plt.show()
|
356 |
+
# Convert to PIL Image and return the Image
|
357 |
+
from PIL import Image
|
358 |
+
|
359 |
+
# Draw the figure to a canvas
|
360 |
+
canvas = fig.canvas
|
361 |
+
canvas.draw()
|
362 |
+
|
363 |
+
# Get the RGBA buffer from the figure
|
364 |
+
w, h = fig.canvas.get_width_height()
|
365 |
+
buf = canvas.tostring_rgb()
|
366 |
+
|
367 |
+
# Create a PIL image from the RGB data
|
368 |
+
image = Image.frombytes("RGB", (w, h), buf)
|
369 |
+
|
370 |
+
|
371 |
+
# Get physical properties
|
372 |
+
l_pred = su.physics.estimate_length_of_air_column(wavelengths)
|
373 |
+
l_pred_mean = l_pred.mean().item()
|
374 |
+
l_pred_mean = np.round(l_pred_mean, 2)
|
375 |
+
H_pred = su.physics.estimate_cylinder_height(wavelengths)
|
376 |
+
H_pred = np.round(H_pred, 2)
|
377 |
+
R_pred = su.physics.estimate_cylinder_radius(wavelengths)
|
378 |
+
R_pred = np.round(R_pred, 2)
|
379 |
+
# print(f"Estimated length: {l_pred_mean} cm, Estimated height: {H_pred} cm, Estimated radius: {R_pred} cm")
|
380 |
+
df_show = pd.DataFrame({
|
381 |
+
"Physical Property": ["Container height", "Container radius", "Length of air column (mean)"],
|
382 |
+
"Estimated Value (in cms)": [H_pred, R_pred, l_pred_mean],
|
383 |
+
})
|
384 |
+
|
385 |
+
|
386 |
+
tsne_image = su.visualize.show_temporal_tsne(
|
387 |
+
z_audio.detach().numpy(), timestamps_eval, show=False,
|
388 |
+
figsize=(6, 5), title="Temporal t-SNE of latent features",
|
389 |
+
return_as_pil = True,
|
390 |
+
)
|
391 |
+
|
392 |
+
return image, df_show, tsne_image
|