Spaces:
Running
Running
File size: 18,875 Bytes
c5f65a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
"""Audio loading utils."""
import os
import numpy as np
import torch
import torchaudio
import decord
import librosa
import einops
import PIL
import matplotlib.pyplot as plt
# Add serif font
plt.rcParams['font.family'] = 'serif'
from PIL import Image, ImageOps
import librosa.display
import shared.utils as su
def read_info(path):
"""
Reads the info of the given audio file.
Args:
path (str): path to the audio file
"""
import ffmpeg
probe = ffmpeg.probe(path)
audio_info = next(
(s for s in probe['streams'] if s['codec_type'] == 'audio'),
None,
)
video_info = next(
(s for s in probe['streams'] if s['codec_type'] == 'video'),
None,
)
return dict(video=video_info, audio=audio_info)
def load_audio_clips(
audio_path,
clips,
sr,
clip_len,
backend='decord',
load_entire=False,
cut_to_clip_len=True,
):
"""
Loads audio clips from the given audio file.
Args:
audio_path (str): path to the audio file
clips (np.ndarray): sized [T, 2], where T is the number of clips
and each row is a pair of start and end times of the clip
sr (int): sample rate
clip_len (float): length of the audio clip in seconds
backend (str): backend to use for loading audio clips
load_entire (bool): whether to load the entire audio file
cut_to_clip_len (bool): whether to cut the audio clip to clip_len
"""
if backend == 'torchaudio':
audio_info = read_info(audio_path)["audio"]
true_sr = int(audio_info["sample_rate"])
true_nf = audio_info["duration_ts"]
audio_duration = true_nf / true_sr
# metadata = torchaudio.info(audio_path)
# true_sr = metadata.sample_rate
# true_nf = metadata.num_frames
elif backend == "decord":
# duration = librosa.get_duration(filename=audio_path)
ar = decord.AudioReader(audio_path, sample_rate=sr, mono=True)
# Mono=False gives NaNs in inputs.
# This (https://gist.github.com/nateraw/fcc2bdb9c8738224957c8617c3360445) might
# be a related issue. Ignoring for now. Need to use torchaudio for now.
true_nf = ar.shape[1]
audio_duration = ar.shape[1] / sr
else:
raise ValueError(f"Unknown backend: {backend}")
if load_entire:
# Load the entire audio as a single clip and return
if backend == 'torchaudio':
y, _ = torchaudio.load(audio_path)
if y.shape[0] > 1:
# Convert to a single channel
y = y.mean(dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(true_sr, sr)
y = resampler(y)
audio = y
elif backend == "decord":
audio = ar.get_batch(np.arange(true_nf)).asnumpy()
audio = torch.from_numpy(audio)
return [audio]
else:
# Clip the clips to avoid going out of bounds
clips = np.clip(clips, 0, audio_duration)
audio_clips = []
for st, et in clips:
if backend == 'torchaudio':
# Load audio within the given time range
sf = max(int(true_sr * st), 0)
ef = min(int(true_sr * et), true_nf)
nf = ef - sf
y, _ = torchaudio.load(audio_path, frame_offset=sf, num_frames=nf)
# Stereo to mono
if y.shape[0] > 1:
# Convert to a single channel
y = y.mean(dim=0, keepdim=True)
# Resample to the given sample rate
resampler = torchaudio.transforms.Resample(true_sr, sr)
y = resampler(y)
audio = y
elif backend == "decord":
# Load audio within the given time range
sf = max(int(st * sr), 0)
ef = min(int(et * sr), true_nf)
audio = ar.get_batch(np.arange(sf, ef)).asnumpy()
audio = torch.from_numpy(audio)
# No need to convert to mono since we are using mono=True
# No need to resample since we are using sample_rate=sr
else:
raise ValueError(f"Unknown backend: {backend}")
# Pad the clip to clip_len
nf_reqd = int(clip_len * sr)
nf_curr = audio.shape[1]
npad_side = max(0, nf_reqd - nf_curr)
if nf_curr < nf_reqd:
audio = torch.nn.functional.pad(audio, (0, npad_side))
elif (nf_curr > nf_reqd) and cut_to_clip_len:
audio = audio[:, :nf_reqd]
audio_clips.append(audio)
return audio_clips
def show_audio_clips_waveform(
audio_clips, clips, title=None, show=True, figsize=(10, 2),
):
"""
Visualizes the given audio clips.
Args:
audio_clips (list): list of audio clips
sr (int): sample rate
title (str): title of the plot
show (bool): whether to show the clips
figsize (tuple): figure size
"""
clip_centers = (clips[:, 0] + clips[:, 1]) / 2
clip_durations = clips[:, 1] - clips[:, 0]
fig, ax = plt.subplots(1, len(audio_clips), figsize=figsize)
if len(audio_clips) == 1:
ax = [ax]
for i, audio in enumerate(audio_clips):
timestamps = np.linspace(
clip_centers[i] - clip_durations[i],
clip_centers[i] + clip_durations[i],
audio.shape[-1],
)
ax[i].plot(timestamps, audio.squeeze().numpy(), alpha=0.5)
ax[i].set_title(f'$t=$ {clip_centers[i]:.2f}')
ax[i].grid(alpha=0.4)
plt.tight_layout()
if show:
plt.show()
else:
plt.savefig('audio_clips_waveform.png')
# TODO: preprocess audio clips (e.g., wav-to-spectrogram, etc.)
# Note that this is different from transforms applied as augmentation
# during training. This is more like a preprocessing step that is applied
# to the entire audio before sampling the clips.
import torchaudio.functional as TAF
import torchaudio.transforms as TAT
def load_audio(path, sr=16000, **kwargs):
y, true_sr = torchaudio.load(path, **kwargs)
y = y.mean(dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(true_sr, sr)
y = resampler(y)
return y, sr
def load_audio_librosa(path, sr=16000, **kwargs):
y, true_sr = librosa.load(path, sr=sr, **kwargs)
y = torch.from_numpy(y).unsqueeze(0)
return y, sr
def librosa_harmonic_spectrogram_db(
y, sr=16000, n_fft=512, hop_length=256, margin=16., n_mels=64,
):
if isinstance(y, torch.Tensor):
y = y.numpy()
if len(y.shape) == 2:
y = y.mean(axis=0)
# center=True outputs 1 more frame than center=False
# Currently, using just center=False
D = librosa.stft(y, n_fft=n_fft, hop_length=hop_length, center=False)
DH, DP = librosa.decompose.hpss(D, margin=margin)
amplitude_h = np.sqrt(2) * np.abs(DH)
if n_mels is None:
# Usual dB spectrogram
SH = librosa.amplitude_to_db(amplitude_h, ref=np.max)
else:
# Mel-scaled dB spectrogram
S = librosa.amplitude_to_db(amplitude_h)
SH = librosa.feature.melspectrogram(S=S, n_mels=n_mels, sr=sr)
return SH
def show_logmelspectrogram(
S,
sr,
n_fft=512,
hop_length=256,
figsize=(10, 3),
ax=None,
show=True,
title="LogMelSpectrogram",
xlabel="Time (s)",
ylabel="Mel bins (Hz)",
return_as_image=False,
):
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
librosa.display.specshow(
S,
sr=sr,
hop_length=hop_length,
n_fft=n_fft,
y_axis='mel',
x_axis='time',
ax=ax,
auto_aspect=True,
)
ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
if return_as_image:
fig.canvas.draw()
image = PIL.Image.frombytes(
'RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb(),
)
plt.close(fig)
return image
if show:
plt.show()
def show_logspectrogram(
S, sr, n_fft=512, hop_length=256, figsize=(10, 3), ax=None, show=True,
):
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
librosa.display.specshow(
S,
sr=sr,
hop_length=hop_length,
n_fft=n_fft,
y_axis='linear',
x_axis='time',
ax=ax,
)
ax.set_title("LogSpectrogram")
if show:
plt.show()
def audio_clips_wav_to_spec(
audio_clips, n_fft=512, hop_length=256, margin=16., n_mels=None,
):
"""
Converts the given audio clips to spectrograms.
Args:
audio_clips (list): list of audio clips
n_fft (int): number of FFT points
hop_length (int): hop length
margin (float): margin for harmonic-percussive source separation
n_mels (int): number of mel bands (optional, if None, then dB spectrogram is returned)
"""
audio_specs = []
for audio in audio_clips:
spec = librosa_harmonic_spectrogram_db(
audio,
n_fft=n_fft,
hop_length=hop_length,
margin=margin,
n_mels=n_mels,
)
spec = torch.from_numpy(spec).unsqueeze(0)
audio_specs.append(spec)
return audio_specs
def show_audio_clips_spec(
audio_specs,
clips,
sr,
n_fft=512,
hop_length=256,
margin=16.,
cmap='magma',
n_mels=None,
show=True,
):
"""
Visualizes the given audio clips.
Args:
audio_specs (list): list of audio spectrograms
clips (np.ndarray): sized [T, 2], where T is the number of clips
and each row is a pair of start and end times of the clip
show (bool): whether to show the clips
"""
clip_centers = (clips[:, 0] + clips[:, 1]) / 2
clip_durations = clips[:, 1] - clips[:, 0]
fig, ax = plt.subplots(1, len(audio_specs), figsize=(10, 4))
if len(audio_specs) == 1:
ax = [ax]
for i, spec in enumerate(audio_specs):
clip_start = clips[i][0]
# ax[i].imshow(spec, aspect='auto', origin='lower')
if isinstance(spec, torch.Tensor):
spec = spec.numpy()
if len(spec.shape) == 3:
spec = spec[0]
args = dict(
data=spec,
sr=sr,
n_fft=n_fft,
hop_length=hop_length,
ax=ax[i],
x_axis="time",
cmap=cmap,
)
if n_mels is None:
args.update(dict(y_axis="linear"))
else:
args.update(dict(y_axis="mel"))
librosa.display.specshow(**args)
# Get xticks and replace them by xticks + clip_start
xticks = ax[i].get_xticks()
xticks = xticks + clip_start
ax[i].set_xticklabels([f'{x:.1f}' for x in xticks])
ax[i].set_title(f'$t=$ {clip_centers[i]:.2f}')
plt.tight_layout()
if show:
plt.show()
else:
plt.savefig('audio_clips_spec.png')
def basic_pipeline_audio_clips(
audio_clips,
spec_args=None,
audio_transform=None,
stack=True,
):
wave_transform = audio_transform.get('wave', None)
spec_transform = audio_transform.get('spec', None)
# Apply transforms to raw waveforms
if wave_transform is not None:
audio_clips = wave_transform(audio_clips)
if spec_args is not None:
# Convert waveforms to spectrograms
audio_clips = audio_clips_wav_to_spec(audio_clips, **spec_args)
# Apply transforms to spectrograms
if spec_transform is not None:
audio_clips = spec_transform(audio_clips)
if stack:
audio_clips = torch.stack(audio_clips)
return audio_clips
def load_and_process_audio(
audio_path,
clips,
cut_to_clip_len=True,
load_entire=False,
audio_transform=None,
aload_args=dict(),
apipe_args=dict(),
):
"""Loads and preprocess audio."""
# [C1] Load video clips: List[torch.Tensor]
audio_clips = load_audio_clips(
audio_path=audio_path,
clips=clips,
load_entire=load_entire,
cut_to_clip_len=cut_to_clip_len,
**aload_args,
)
# [C2] Pipeline: [Preprocessing -> Transform]
audio_clips = basic_pipeline_audio_clips(
audio_clips=audio_clips,
audio_transform=audio_transform,
**apipe_args,
)
return audio_clips
def crop_height(image, height):
"""Crops image from the top and bottom to the desired height."""
width, curr_height = image.size
if curr_height < height:
raise ValueError(f"Height of the image is less than {height}")
top = (curr_height - height) // 2
bottom = top + height
return image.crop((0, top, width, bottom))
def pad_to_height(image, height):
"""Pads image with black strips at the top and bottom."""
width, curr_height = image.size
if curr_height > height:
raise ValueError(f"Height of the image is already greater than {height}")
top = (height - curr_height) // 2
bottom = height - curr_height - top
return ImageOps.expand(image, (0, top, 0, bottom), fill="black")
def crop_width(image, width):
"""Crops image from the left and right to the desired width."""
curr_width, height = image.size
if curr_width < width:
raise ValueError(f"Width of the image is less than {width}")
left = (curr_width - width) // 2
right = left + width
return image.crop((left, 0, right, height))
def crop_or_pad_height(image, height):
"""Crops or pads image to the desired height."""
width, curr_height = image.size
if curr_height < height:
return pad_to_height(image, height)
elif curr_height > height:
return crop_height(image, height)
return image
def crop_or_pad_width(image, width):
"""Crops or pads image to the desired width."""
curr_width, height = image.size
if curr_width < width:
return pad_to_width(image, width)
elif curr_width > width:
return crop_width(image, width)
return image
def pad_to_width(image, width):
"""Pads image with black strips at the left and right."""
curr_width, height = image.size
if curr_width > width:
raise ValueError(f"Width of the image is already greater than {width}")
left = (width - curr_width) // 2
right = width - curr_width - left
return ImageOps.expand(image, (left, 0, right, 0), fill="black")
def crop_or_pad_to_size(image, size=(270, 480)):
"""Crops or pads image to the desired size."""
image = crop_or_pad_height(image, size[1])
image = crop_or_pad_width(image, size[0])
return image
if __name__ == "__main__":
import decord
import sound_of_water.data.audio_transforms as at
# Testing on a sample file
file_path = "media_assets/ayNzH0uygFw_9.0_21.0.mp4"
assert os.path.exists(file_path), f"File not found: {file_path}"
# Define audio transforms
cfg_transform = {
"audio": {
"wave": [
{
"name": "AddNoise",
"args": {
"noise_level": 0.001
},
"augmentation": True,
},
{
"name": "ChangeVolume",
"args": {
"volume_factor": [0.8, 1.2]
},
"augmentation": True,
},
{
"name": "Wav2Vec2WaveformProcessor",
"args": {
"model_name": "facebook/wav2vec2-base-960h",
"sr": 16000
}
}
],
"spec": None,
}
}
audio_transform = at.define_audio_transforms(
cfg_transform, augment=False,
)
# Define audio load arguments
aload_args = {
"sr": 16000,
"clip_len": None,
"backend": "decord",
}
# Define audio pipeline arguments
apipe_args = {
"spec_args": None,
"stack": True,
}
# Run the pipeline (this is used to pass to the model)
audio = load_and_process_audio(
audio_path=file_path,
clips=None,
load_entire=True,
cut_to_clip_len=False,
audio_transform=audio_transform,
aload_args=aload_args,
apipe_args=apipe_args,
)[0]
# This will be used to visualise
visualise_args = {
"sr": 16000,
"n_fft": 400,
"hop_length": 320,
"n_mels": 64,
"margin": 16.,
"C": 340 * 100.,
"audio_output_fps": 49.,
}
y = load_audio_clips(
audio_path=file_path,
clips=None,
load_entire=True,
cut_to_clip_len=False,
**aload_args,
)[0]
S = librosa_harmonic_spectrogram_db(
y,
sr=visualise_args["sr"],
n_fft=visualise_args["n_fft"],
hop_length=visualise_args["hop_length"],
n_mels=visualise_args['n_mels'],
)
# Load video frame
vr = decord.VideoReader(file_path, num_threads=1)
frame = PIL.Image.fromarray(vr[0].asnumpy())
"""
# Cut to desired width
new_width, new_height = 270, 480
width, height = frame.size
if width > new_width:
# Crop the width
left = (width - new_width) // 2
right = left + new_width
frame = frame.crop((left, 0, right, height))
else:
# Resize along width to have the desired width
frame = su.visualize.resize_width(frame, new_width)
assert frame.size[0] == new_width, \
f"Width mismatch: {frame.size[0]} != {new_width}"
# Now pad/crop to desired height
if height > new_height:
# Crop the height
top = (height - new_height) // 2
bottom = top + new_height
frame = frame.crop((0, top, new_width, bottom))
else:
# Pad the height
frame = pad_to_height(frame, new_height)
assert frame.size[1] == new_height, \
f"Height mismatch: {frame.size[1]} != {new_height}"
"""
frame = crop_or_pad_to_size(frame)
# frame.save("1.png")
# Visualise
fig, axes = plt.subplots(
1, 2, figsize=(13, 4), width_ratios=[0.25, 0.75],
)
ax = axes[0]
ax.imshow(frame, aspect="auto")
ax.set_title("Example frame")
ax.set_xticks([])
ax.set_yticks([])
ax = axes[1]
show_logmelspectrogram(
S=S,
ax=ax,
show=False,
sr=visualise_args["sr"],
n_fft=visualise_args["n_fft"],
hop_length=visualise_args["hop_length"],
)
plt.savefig("./media_assets/audio_visualisation.png", bbox_inches="tight")
plt.close()
|