Spaces:
Running
Running
File size: 3,026 Bytes
eafbf97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
"""Audio-visual helper functions."""
import cv2
import numpy as np
import torch
def save_video_with_audio(video, audio, output_path):
"""
Saves a video file with audio.
Args:
video (np.ndarray): Video frames.
audio (np.ndarray): Audio samples.
output_path (str): Output path.
"""
# check the correct shape and format for audio
assert isinstance(audio, np.ndarray)
assert len(audio.shape) == 2
assert audio.shape[1] in [1, 2]
# create video writer
video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 30, (video.shape[2], video.shape[1]))
# write the image frames to the video
for frame in video:
video_writer.write(frame)
# add the audio data to the video
video_writer.write(audio)
# release the VideoWriter object
video_writer.release()
def save_video_from_image_sequence_and_audio(sequence, audio, save_path, video_fps=15, audio_fps=22100):
from moviepy.editor import VideoClip, AudioClip, ImageSequenceClip
from moviepy.audio.AudioClip import AudioArrayClip
assert isinstance(sequence, list) and isinstance(audio, (np.ndarray, torch.Tensor))
assert len(audio.shape) == 2 and audio.shape[1] in [1, 2]
video_duration = len(sequence) / video_fps
audio_duration = len(audio) / audio_fps
# # print(f"Video duration: {video_duration:.2f}s, audio duration: {audio_duration:.2f}s")
# assert video_duration == audio_duration, \
# f"Video duration ({video_duration}) and audio duration ({audio_duration}) do not match."
video_clip = ImageSequenceClip(sequence, fps=video_fps)
audio_clip = AudioArrayClip(audio, fps=audio_fps)
video_clip = video_clip.set_audio(audio_clip)
# video_clip.write_videofile(save_path, verbose=True, logger=None, fps=video_fps, audio_fps=audio_fps)
video_clip.write_videofile(save_path, verbose=False, logger=None)
import cv2, os
import argparse
import numpy as np
from glob import glob
import librosa
import subprocess
def generate_video(args):
frames = glob('{}/*.png'.format(args.input_dir))
print("Total frames = ", len(frames))
frames.sort(key = lambda x: int(x.split("/")[-1].split(".")[0]))
img = cv2.imread(frames[0])
print(img.shape)
fname = 'inference.avi'
video = cv2.VideoWriter(
fname, cv2.VideoWriter_fourcc(*'DIVX'), args.fps, (img.shape[1], img.shape[0]),
)
for i in range(len(frames)):
img = cv2.imread(frames[i])
video.write(img)
video.release()
output_file_name = args.output_video
no_sound_video = output_file_name + '_nosound.mp4'
subprocess.call('ffmpeg -hide_banner -loglevel panic -i %s -c copy -an -strict -2 %s' % (fname, no_sound_video), shell=True)
if args.audio_file is not None:
video_output = output_file_name + '.mp4'
subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 %s' %
(args.audio_file, no_sound_video, video_output), shell=True)
os.remove(no_sound_video)
os.remove(fname) |