File size: 10,136 Bytes
15e05b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e21ebc5
 
 
 
 
 
 
 
15e05b1
 
 
 
 
e21ebc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fdbfbc
e21ebc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e05b1
 
 
 
e21ebc5
15e05b1
e21ebc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e05b1
 
 
e21ebc5
 
 
 
15e05b1
 
 
e21ebc5
 
15e05b1
 
 
 
e21ebc5
 
15e05b1
 
 
 
e21ebc5
 
 
 
 
 
 
15e05b1
e21ebc5
 
15e05b1
e21ebc5
 
 
15e05b1
e21ebc5
15e05b1
 
 
 
 
 
 
 
 
 
 
 
e21ebc5
 
 
 
 
 
 
 
 
 
 
 
 
15e05b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e21ebc5
15e05b1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import sys
sys.path.append("../")

import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "serif"
import decord
import PIL, PIL.Image
import librosa
from IPython.display import Markdown, display
import pandas as pd

from util import *


css = """
<style>
    body {
        font-family: 'Arial', serif;
        margin: 0;
        padding: 0;
        color: black;
    }
    .header {
        display: flex;
        align-items: center;
        justify-content: center;
        margin-top: 5px;
        color: black;
    }
    .footer {
        display: flex;
        align-items: center;
        justify-content: center;
        margin-top: 5px;
    }
    .image {
        margin-right: 20px;
    }
    .content {
        text-align: center;
        color: black;
    }
    .title {
        font-size: 2.5em;
        font-weight: bold;
        margin-bottom: 10px;
    }
    .authors {
        color: #4a90e2;
        font-size: 1.05em;
        margin: 10px 0;
    }
    .affiliations {
        font-size: 1.em;
        margin-bottom: 20px;
    }
    .buttons {
        display: flex;
        justify-content: center;
        gap: 10px;
    }
    .button {
        background-color: #545758;
        text-decoration: none;
        padding: 8px 16px;
        border-radius: 5px;
        font-size: 1.05em;
    }
    .button:hover {
        background-color: #333;
    }
</style>
"""


header = css + """
<div class="header">
    <!-- <div class="image">
        <img src="./media_assets/pouring-water-logo5.png" alt="logo" width="100">
    </div> -->
    <div class="content">
        <img src="https://bpiyush.github.io/pouring-water-website/assets/pouring-water-logo5.png" alt="logo" width="80" style="margin-bottom: -50px; margin-right: 30px;">
        <div class="title" style="font-size: 44px; margin-left: -30px;">The Sound of Water</div>
        <div style="font-size: 30px; margin-left: -30px;"><b>Inferring Physical Properties from Pouring Liquids</b></div>
        <div class="authors">
            <a style="color: #92eaff; href="https://bpiyush.github.io/">Piyush Bagad</a><sup>1</sup>,
            <a style="color: #92eaff; href="https://makarandtapaswi.github.io/">Makarand Tapaswi</a><sup>2</sup>,
            <a style="color: #92eaff; href="https://www.ceessnoek.info/">Cees G. M. Snoek</a><sup>3</sup>,
            <a style="color: #92eaff; href="https://www.robots.ox.ac.uk/~az/">Andrew Zisserman</a><sup>1</sup>,
        </div>
        <div class="affiliations">
            <sup>1</sup>University of Oxford, <sup>2</sup>IIIT Hyderabad, <sup>3</sup>University of Amsterdam
        </div>
        
        <div class="buttons">
            <a href="#" style="color: #92eaff;" class="button">arXiv</a>
            <a href="https://bpiyush.github.io/pouring-water-website/" style="color: #92eaff;" class="button">🌐 Project</a>
            <a href="https://github.com/bpiyush/SoundOfWater" style="color: #92eaff;" class="button"> <img src="https://bpiyush.github.io/pouring-water-website/assets/github-logo.png" alt="logo" style="height:16px; float: left;"> &nbsp;Code</a>
            <a href="https://huggingface.co/datasets/bpiyush/sound-of-water" style="color: #92eaff;" class="button">πŸ€— Data</a>
            <a href="https://huggingface.co/bpiyush/sound-of-water-models" style="color: #92eaff;" class="button">πŸ€— Models</a>
            <a href="#" style="color: #92eaff;" class="button">🎯 Demo</a>
        </div>
    </div>
</div>
"""

footer = css + """
<div class="header" style="justify-content: left;">
<div class="content" style="font-size: 16px;">
Please give us a 🌟 on <a href='https://github.com/bpiyush/SoundOfWater'>Github</a> if you like our work!
Tips to get better results:
<br><br>
<ol style="text-align: left; font-size: 14px; margin-left: 30px">
    <li>The first example may take up to 30-60s for processing since the model is also loaded.</li>
    <li>
    If you are providing a link, it may take a few seconds to download video from YouTube.
    Note that the entire video shall be used.
    If the sound of pouring is not clear, the results will be random.
    </li>
    <li>Although the model is somewhat robust to noise, make sure there is not too much noise such that the pouring is audible.</li>
    <li>Note that the video is not used during the inference. The displayed frame is only for reference.</li>
</ol>
</div>
</div>
"""


def download_from_youtube(
        video_id,
        save_dir="/tmp/",
        convert_to_mp4=False,
    ):
    """
    Downloads a YouTube video from start to end times.

    Args:
        video_id (str): YouTube video ID.
        save_dir (str): Directory to save the video.
        convert_to_mp4 (bool): Whether to convert the video to mp4 format.

    The saved video is in the format: {save_dir}/{video_id}.mp4
    """

    import datetime
    from subprocess import call

    print("Downloading video from YouTube...")
    print("Video ID:", video_id)

    command = [
        "yt-dlp",
        "-o", "'{}%(id)s.%(ext)s'".format(save_dir),
        "--cookies ./chrome_cookies.txt",
        "--verbose",
        "--force-overwrites",
        f"https://www.youtube.com/watch?v={video_id}",
    ]
    call(" ".join(command), shell=True)

    # If not mp4, convert to mp4
    from glob import glob
    saved_filepath = glob(os.path.join(save_dir, f"{video_id}.*"))[0]
    print("Saved file:", saved_filepath)

    if convert_to_mp4:
        ext = saved_filepath.split(".")[-1]
        to_save = saved_filepath.replace(ext, "mp4")
        if ext != "mp4":
            # convert to mp4 using ffmpeg
            command = "ffmpeg -y -i {} {}".format(saved_filepath, to_save)
            call(command, shell=True)
        return to_save
    else:
        return saved_filepath


def configure_input():
    gr.Markdown(
        "#### Either upload a video file or provide a YouTube link to a video. Note that the entire video shall be used.",
    )
    video_input = gr.Video(label="Upload Video", height=520)
    youtube_link = gr.Textbox(label="YouTube Link", value=None)
    return [video_input, youtube_link]


# video_backend = "decord"
video_backend = "torchvision"
def get_predictions(video_path):
    model = load_model()
    frame = load_frame(video_path, video_backend=video_backend)
    S = load_spectrogram(video_path)
    audio = load_audio_tensor(video_path)
    z_audio, y_audio = get_model_output(audio, model)
    image, df_show, tsne_image = show_output(frame, S, y_audio, z_audio)
    return image, df_show, tsne_image


def get_video_id_from_url(url):
    import re 
    if "v=" in url:
        video_id = re.findall(r"v=([a-zA-Z0-9_-]+)", url)
    elif "youtu.be" in url:
        video_id = re.findall(r"youtu.be/([a-zA-Z0-9_-]+)", url)
    elif "shorts" in url:
        video_id = re.findall(r"shorts/([a-zA-Z0-9_-]+)", url)
    else:
        raise ValueError("Invalid YouTube URL")
    print("Video URL:", url)
    print("Video ID:", video_id)

    if len(video_id) > 0:
        return video_id[0]
    else:
        raise ValueError("Invalid YouTube URL")


note = """
**Note**: Radius (as well as height) estimation depends on accurate wavelength estimation towards the end.
Thus, it may not be accurate if the wavelength is not estimated correctly at the end.

$$
H = l(0) = \\frac{\lambda(0) - \lambda(T)}{4} \ \ \\text{and} \ \ R = \\frac{\lambda(T)}{4\\beta}
$$
"""


# Example usage in a Gradio interface
def process_input(video, youtube_link):
    if video is not None and len(youtube_link) > 0:
        raise ValueError("Please provide either a video file or a YouTube link, not both.")

    if video is not None:
        print(video)

        # # Load model globally
        # model = load_model()

        # The input is a video file path
        video_path = video

        # Get predictions
        image, df_show, tsne_image = get_predictions(video_path)

        return image, df_show, gr.Markdown(note), tsne_image

    else:
        assert len(youtube_link) > 0, \
            "YouTube Link cannot be empty if no video is provided."
        
        video_id = get_video_id_from_url(youtube_link)
        video_path = download_from_youtube(
            video_id, save_dir="/tmp/", convert_to_mp4=False,
        )

        # Get predictions
        image, df_show, tsne_image = get_predictions(video_path)

        # Add youtube link to the note
        local_note = f"{note}\n\nYou can watch the original video here: "\
            f"[YouTube Link](https://www.youtube.com/watch?v={video_id})"

        return image, df_show, gr.Markdown(local_note), tsne_image


def configure_outputs():
    image_wide = gr.Image(label="Estimated pitch")
    dataframe = gr.DataFrame(label="Estimated physical properties")
    image_tsne = gr.Image(label="TSNE of features", width=300)
    markdown = gr.Markdown(label="Note")
    return [image_wide, dataframe, markdown, image_tsne]


# Configure pre-defined examples
examples = [
    ["./media_assets/example_video.mp4", None],
    ["./media_assets/ayNzH0uygFw_9.0_21.0.mp4", None],
    ["./media_assets/biDn0Gi6V8U_7.0_15.0.mp4", None],
    ["./media_assets/goWgiQQMugA_2.5_9.0.mp4", None],
    ["./media_assets/K87g4RvO-9k_254.0_259.0.mp4", None],
    # Shows that it works with background noise
    ["./media_assets/l74zJHCZ9uA.webm", None],
    # Shows that it works with a slightly differently shaped container
    ["./media_assets/LpRPV0hIymU.webm", None],
    ["./media_assets/k-HnMsS36J8.webm", None],
    # [None, "https://www.youtube.com/shorts/6eUQTdkTooo"],
    # [None, "https://www.youtube.com/shorts/VxZT15cG6tw"],
    # [None, "https://www.youtube.com/shorts/GSXQnNhliDY"],
]


# Define Gradio interface
with gr.Blocks(
    css=custom_css,
    theme=gr.themes.Default(),
) as demo:

    # Add the header
    gr.HTML(header)
    
    gr.Interface(
        fn=process_input,
        inputs=configure_input(),
        outputs=configure_outputs(),
        examples=examples,
    )

    # Add the footer
    gr.HTML(footer)


# Launch the interface
demo.launch(allowed_paths=["."], share=True)