from llama_index import Document from llama_index.chat_engine import CondenseQuestionChatEngine from llama_index.indices.vector_store import VectorIndexRetriever from llama_index.node_parser import SimpleNodeParser from llama_index import LangchainEmbedding, ServiceContext from llama_index import VectorStoreIndex from llama_index import StorageContext, load_index_from_storage from llama_index.query_engine import RetrieverQueryEngine from llama_index.response_synthesizers import TreeSummarize,get_response_synthesizer from llama_index.llms import ChatMessage from langchain.llms import Clarifai from langchain.embeddings import ClarifaiEmbeddings from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc from clarifai_grpc.grpc.api.status import status_code_pb2 import uuid import streamlit as st import modal CLARIFAI_PAT = st.secrets.CLARIFAI_PAT MODERATION_THRESHOLD = st.secrets.MODERATION_THRESHOLD st.set_page_config(page_title="Research Buddy: Insights and Q&A on AI Research Papers using GPT and Nougat", page_icon="🧐", layout="centered", initial_sidebar_state="auto", menu_items=None) st.title(body="AI Research Buddy: Nougat + GPT Powered Paper Insights 📚🤖") st.info("""This Application currently only works with arxiv and acl anthology web links which belong to the format:- 1) Arxiv:- https://arxiv.org/abs/paper_unique_identifier 2) ACL Anthology:- https://aclanthology.org/paper_unique_identifier/ This Application uses the recently released Meta Nougat Visual Transformer for processing Papers. The Nougat Transformer is inferenced through a deployed app I created on the Modal platform(https://modal.com/) and uses T4 GPU as hardware""", icon="ℹī¸") user_input = st.text_input("Enter the arxiv or acl anthology url of the paper", "https://aclanthology.org/2023.semeval-1.266/") def initialize_session_state(): if "vector_store" not in st.session_state: st.session_state.vector_store = None if "messages" not in st.session_state.keys(): st.session_state.messages = [ {"role": "assistant", "content": "Ask me a question about the research paper"} ] if "paper_content" not in st.session_state: st.session_state.paper_content = None if "paper_insights" not in st.session_state: st.session_state.paper_insights = None initialize_session_state() def is_arxiv_url(url: str) -> bool: import re arxiv_pattern = r'https?://arxiv\.org/abs/.+' return bool(re.match(arxiv_pattern, url)) def is_acl_anthology_url(url: str) -> bool: import re acl_anthology_pattern = r'https://aclanthology\.org/.*?/' return bool(re.match(acl_anthology_pattern, url)) def get_paper_content(url: str) -> str: with st.spinner(text="Using Nougat(https://facebookresearch.github.io/nougat/) to read the paper contents and get the markdown representation of the paper – hang tight! This should take 1-2 minutes"): if is_arxiv_url(url=url) or is_acl_anthology_url(url=url): f = modal.Function.lookup("streamlit-hack", "main") output = f.call(url) st.session_state.paper_content = output return output else: return 'Invalid URL. Please provide a valid ArXiv or ACL Anthology URL.' def index_paper_content(content: str): with st.spinner(text="Indexing the paper – hang tight! This should take 1-2 minutes"): try: LLM_USER_ID = 'openai' LLM_APP_ID = 'chat-completion' # Change these to whatever model and text URL you want to use LLM_MODEL_ID = 'GPT-3_5-turbo' llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID) documents = [Document(text=content)] parser = SimpleNodeParser.from_defaults() nodes = parser.get_nodes_from_documents(documents) USER_ID = 'openai' APP_ID = 'embed' # Change these to whatever model and text URL you want to use MODEL_ID = 'text-embedding-ada' embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID) embed_model = LangchainEmbedding(embeddings) service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) index = VectorStoreIndex(nodes, service_context=service_context) persist_dir = uuid.uuid4().hex st.session_state.vector_store = persist_dir index.storage_context.persist(persist_dir=persist_dir) return "Paper has been Indexed" except Exception as e: print(str(e)) return "Unable to Index the Research Paper" def generate_insights(): with st.spinner(text="Generating insights on the paper and preparing the Chatbot. Hang tight! this should take 1-2 mins."): try: LLM_USER_ID = 'openai' LLM_APP_ID = 'chat-completion' # Change these to whatever model and text URL you want to use LLM_MODEL_ID = 'GPT-3_5-turbo' llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID) USER_ID = 'openai' APP_ID = 'embed' # Change these to whatever model and text URL you want to use MODEL_ID = 'text-embedding-ada' embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID) embed_model = LangchainEmbedding(embeddings) service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) index = load_index_from_storage( StorageContext.from_defaults(persist_dir=st.session_state.vector_store), service_context=service_context ) retriever = VectorIndexRetriever( index=index, similarity_top_k=4, ) # configure response synthesizer response_synthesizer = get_response_synthesizer( response_mode="simple_summarize", service_context=service_context ) # assemble query engine query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer, ) response_key_insights = query_engine.query("Generate core crux insights, contributions and results of the paper as Key Topics and thier content in markdown format where each Key Topic is in bold followed by its content") st.session_state.paper_insights = response_key_insights.response except Exception as e: print(str(e)) response_key_insights = "Error While Generating Insights" st.session_state.paper_insights = response_key_insights if st.button("Read and Index Paper"): paper_content = get_paper_content(url=user_input) if 'Invalid URL. Please provide a valid ArXiv or ACL Anthology URL.' in paper_content: st.write('Invalid URL. Please provide a valid ArXiv or ACL Anthology URL.') else: if st.session_state.paper_content is not None: result = index_paper_content(content=paper_content) st.write(result) generate_insights() if st.session_state.paper_content is not None: with st.expander("See Research Paper Contents"): st.markdown(st.session_state.paper_content) if st.session_state.paper_insights is not None: st.sidebar.title("# 🚀 Illuminating Research Insights 📜💡") st.sidebar.write(st.session_state.paper_insights) def reset_conversation(): st.session_state.messages = [ {"role": "assistant", "content": "Ask me a question about the research paper"} ] def moderate_text(text: str) -> tuple: MODERATION_USER_ID = 'clarifai' MODERATION_APP_ID = 'main' # Change these to whatever model and text URL you want to use MODERATION_MODEL_ID = 'moderation-multilingual-text-classification' MODERATION_MODEL_VERSION_ID = '79c2248564b0465bb96265e0c239352b' channel = ClarifaiChannel.get_grpc_channel() stub = service_pb2_grpc.V2Stub(channel) metadata = (('authorization', 'Key ' + CLARIFAI_PAT),) userDataObject = resources_pb2.UserAppIDSet(user_id=MODERATION_USER_ID, app_id=MODERATION_APP_ID) # To use a local text file, uncomment the following lines # with open(TEXT_FILE_LOCATION, "rb") as f: # file_bytes = f.read() post_model_outputs_response = stub.PostModelOutputs( service_pb2.PostModelOutputsRequest( user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT model_id=MODERATION_MODEL_ID, version_id=MODERATION_MODEL_VERSION_ID, # This is optional. Defaults to the latest model version inputs=[ resources_pb2.Input( data=resources_pb2.Data( text=resources_pb2.Text( raw=text ) ) ) ] ), metadata=metadata ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: print(post_model_outputs_response.status) raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description) # Since we have one input, one output will exist here output = post_model_outputs_response.outputs[0] moderation_reasons = "" intervention_required = False for concept in output.data.concepts: if concept.value > MODERATION_THRESHOLD: moderation_reasons += concept.name + "," intervention_required = True return moderation_reasons, intervention_required if st.session_state.vector_store is not None: LLM_USER_ID = 'openai' LLM_APP_ID = 'chat-completion' # Change these to whatever model and text URL you want to use LLM_MODEL_ID = 'GPT-3_5-turbo' llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID) USER_ID = 'openai' APP_ID = 'embed' # Change these to whatever model and text URL you want to use MODEL_ID = 'text-embedding-ada' embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID) embed_model = LangchainEmbedding(embeddings) service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) index = load_index_from_storage( StorageContext.from_defaults(persist_dir=st.session_state.vector_store), service_context=service_context ) retriever = VectorIndexRetriever( index=index, similarity_top_k=2, ) # configure response synthesizer response_synthesizer = get_response_synthesizer( response_mode="tree_summarize", service_context=service_context ) # assemble query engine query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer, ) custom_chat_history = [] for message in st.session_state.messages: custom_message = ChatMessage(role=message["role"], content=message["content"]) custom_chat_history.append(custom_message) chat_engine = CondenseQuestionChatEngine.from_defaults(service_context=service_context, query_engine=query_engine, verbose=True, chat_history=custom_chat_history) if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history st.session_state.messages.append({"role": "user", "content": prompt}) st.button('Reset Chat', on_click=reset_conversation) for message in st.session_state.messages: # Display the prior chat messages with st.chat_message(message["role"]): st.write(message["content"]) # If last message is not from assistant, generate a new response if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): try: reason, intervene = moderate_text(prompt) except Exception as e: print(str(e)) reason = '' intervene = False if not intervene: response = chat_engine.chat(prompt) st.write(response.response) message = {"role": "assistant", "content": response.response} st.session_state.messages.append(message) # Add response to message history else: response = f"This query cannot be processed as it has been detected to be {reason}" st.write(response) message = {"role": "assistant", "content": response} st.session_state.messages.append(message)