Spaces:
Paused
Paused
Upload 3 files
Browse files- packages.txt +0 -0
- requirements.txt +6 -0
- research_buddy_app.py +296 -0
packages.txt
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama-index==0.8.27
|
2 |
+
modal
|
3 |
+
python-rapidjson==1.10
|
4 |
+
clarifai==9.8.0
|
5 |
+
clarifai-grpc==9.8.0
|
6 |
+
streamlit
|
research_buddy_app.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index import Document
|
2 |
+
from llama_index.chat_engine import CondenseQuestionChatEngine
|
3 |
+
from llama_index.indices.vector_store import VectorIndexRetriever
|
4 |
+
from llama_index.node_parser import SimpleNodeParser
|
5 |
+
from llama_index import LangchainEmbedding, ServiceContext
|
6 |
+
from llama_index import VectorStoreIndex
|
7 |
+
from llama_index import StorageContext, load_index_from_storage
|
8 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
9 |
+
from llama_index.response_synthesizers import TreeSummarize,get_response_synthesizer
|
10 |
+
from llama_index.llms import ChatMessage
|
11 |
+
|
12 |
+
from langchain.llms import Clarifai
|
13 |
+
from langchain.embeddings import ClarifaiEmbeddings
|
14 |
+
|
15 |
+
|
16 |
+
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
|
17 |
+
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
|
18 |
+
from clarifai_grpc.grpc.api.status import status_code_pb2
|
19 |
+
|
20 |
+
|
21 |
+
import uuid
|
22 |
+
|
23 |
+
import streamlit as st
|
24 |
+
|
25 |
+
import modal
|
26 |
+
|
27 |
+
CLARIFAI_PAT = st.secrets.CLARIFAI_PAT
|
28 |
+
MODERATION_THRESHOLD = st.secrets.MODERATION_THRESHOLD
|
29 |
+
st.set_page_config(page_title="Research Buddy: Insights and Q&A on AI Research Papers using GPT and Nougat", page_icon="π§", layout="centered", initial_sidebar_state="auto", menu_items=None)
|
30 |
+
st.title(body="AI Research Buddy: Nougat + GPT Powered Paper Insights ππ€")
|
31 |
+
st.info("""This Application currently only works with arxiv and acl anthology web links which belong to the format:-
|
32 |
+
1) Arxiv:- https://arxiv.org/abs/paper_unique_identifier
|
33 |
+
2) ACL Anthology:- https://aclanthology.org/paper_unique_identifier/
|
34 |
+
|
35 |
+
This Application uses the recently released Meta Nougat Visual Transformer for processing Papers""", icon="βΉοΈ")
|
36 |
+
user_input = st.text_input("Enter the arxiv or acl anthology url of the paper", "https://aclanthology.org/2023.semeval-1.266/")
|
37 |
+
|
38 |
+
|
39 |
+
def initialize_session_state():
|
40 |
+
if "vector_store" not in st.session_state:
|
41 |
+
st.session_state.vector_store = None
|
42 |
+
|
43 |
+
if "messages" not in st.session_state.keys():
|
44 |
+
st.session_state.messages = [
|
45 |
+
{"role": "assistant", "content": "Ask me a question about the research paper"}
|
46 |
+
]
|
47 |
+
|
48 |
+
if "paper_content" not in st.session_state:
|
49 |
+
st.session_state.paper_content = None
|
50 |
+
|
51 |
+
if "paper_insights" not in st.session_state:
|
52 |
+
st.session_state.paper_insights = None
|
53 |
+
|
54 |
+
|
55 |
+
initialize_session_state()
|
56 |
+
|
57 |
+
|
58 |
+
def get_paper_content(url: str) -> str:
|
59 |
+
with st.spinner(text="Using Nougat(https://facebookresearch.github.io/nougat/) to read the paper contents and get the markdown representation of the paper"):
|
60 |
+
f = modal.Function.lookup("streamlit-hack", "main")
|
61 |
+
output = f.call(url)
|
62 |
+
st.session_state.paper_content = output
|
63 |
+
return output
|
64 |
+
|
65 |
+
|
66 |
+
def index_paper_content(content: str):
|
67 |
+
with st.spinner(text="Indexing the paper β hang tight! This should take 3-5 minutes"):
|
68 |
+
try:
|
69 |
+
LLM_USER_ID = 'openai'
|
70 |
+
LLM_APP_ID = 'chat-completion'
|
71 |
+
# Change these to whatever model and text URL you want to use
|
72 |
+
LLM_MODEL_ID = 'GPT-3_5-turbo'
|
73 |
+
llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID)
|
74 |
+
|
75 |
+
documents = [Document(text=content)]
|
76 |
+
parser = SimpleNodeParser.from_defaults()
|
77 |
+
|
78 |
+
nodes = parser.get_nodes_from_documents(documents)
|
79 |
+
USER_ID = 'openai'
|
80 |
+
APP_ID = 'embed'
|
81 |
+
# Change these to whatever model and text URL you want to use
|
82 |
+
MODEL_ID = 'text-embedding-ada'
|
83 |
+
embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
|
84 |
+
embed_model = LangchainEmbedding(embeddings)
|
85 |
+
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
|
86 |
+
index = VectorStoreIndex(nodes, service_context=service_context)
|
87 |
+
persist_dir = uuid.uuid4().hex
|
88 |
+
st.session_state.vector_store = persist_dir
|
89 |
+
index.storage_context.persist(persist_dir=persist_dir)
|
90 |
+
return "Paper has been Indexed"
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
print(str(e))
|
94 |
+
return "Unable to Index the Research Paper"
|
95 |
+
|
96 |
+
|
97 |
+
def generate_insights():
|
98 |
+
with st.spinner(text="Generating insights on the paper and preparing the Chatbot"):
|
99 |
+
try:
|
100 |
+
LLM_USER_ID = 'openai'
|
101 |
+
LLM_APP_ID = 'chat-completion'
|
102 |
+
# Change these to whatever model and text URL you want to use
|
103 |
+
LLM_MODEL_ID = 'GPT-3_5-turbo'
|
104 |
+
llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID)
|
105 |
+
|
106 |
+
USER_ID = 'openai'
|
107 |
+
APP_ID = 'embed'
|
108 |
+
# Change these to whatever model and text URL you want to use
|
109 |
+
MODEL_ID = 'text-embedding-ada'
|
110 |
+
embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
|
111 |
+
embed_model = LangchainEmbedding(embeddings)
|
112 |
+
|
113 |
+
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
|
114 |
+
|
115 |
+
index = load_index_from_storage(
|
116 |
+
StorageContext.from_defaults(persist_dir=st.session_state.vector_store),
|
117 |
+
service_context=service_context
|
118 |
+
)
|
119 |
+
|
120 |
+
retriever = VectorIndexRetriever(
|
121 |
+
index=index,
|
122 |
+
similarity_top_k=4,
|
123 |
+
)
|
124 |
+
# configure response synthesizer
|
125 |
+
response_synthesizer = get_response_synthesizer(
|
126 |
+
response_mode="tree_summarize", service_context=service_context
|
127 |
+
)
|
128 |
+
|
129 |
+
# assemble query engine
|
130 |
+
query_engine = RetrieverQueryEngine(
|
131 |
+
retriever=retriever,
|
132 |
+
response_synthesizer=response_synthesizer,
|
133 |
+
)
|
134 |
+
|
135 |
+
response_key_insights = query_engine.query("Generate core crux insights, contributions and results of the paper as Key Topics and thier content in markdown format where each Key Topic is in bold followed by its content")
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
print(str(e))
|
139 |
+
response_key_insights = "Error While Generating Insights"
|
140 |
+
|
141 |
+
st.session_state.paper_insights = response_key_insights.response
|
142 |
+
|
143 |
+
|
144 |
+
if st.button("Read and Index Paper"):
|
145 |
+
paper_content = get_paper_content(url=user_input)
|
146 |
+
|
147 |
+
if st.session_state.paper_content is not None:
|
148 |
+
with st.expander("See Paper Contents"):
|
149 |
+
st.markdown(paper_content)
|
150 |
+
|
151 |
+
result = index_paper_content(content=paper_content)
|
152 |
+
st.write(result)
|
153 |
+
generate_insights()
|
154 |
+
|
155 |
+
|
156 |
+
if st.session_state.paper_content is not None:
|
157 |
+
with st.expander("See Paper Contents"):
|
158 |
+
st.markdown(st.session_state.paper_content)
|
159 |
+
|
160 |
+
if st.session_state.paper_insights is not None:
|
161 |
+
st.sidebar.title("# π Illuminating Research Insights ππ‘")
|
162 |
+
st.sidebar.write(st.session_state.paper_insights)
|
163 |
+
|
164 |
+
|
165 |
+
def reset_conversation():
|
166 |
+
st.session_state.messages = [
|
167 |
+
{"role": "assistant", "content": "Ask me a question about the research paper"}
|
168 |
+
]
|
169 |
+
|
170 |
+
|
171 |
+
def moderate_text(text: str) -> tuple:
|
172 |
+
MODERATION_USER_ID = 'clarifai'
|
173 |
+
MODERATION_APP_ID = 'main'
|
174 |
+
# Change these to whatever model and text URL you want to use
|
175 |
+
MODERATION_MODEL_ID = 'moderation-multilingual-text-classification'
|
176 |
+
MODERATION_MODEL_VERSION_ID = '79c2248564b0465bb96265e0c239352b'
|
177 |
+
|
178 |
+
channel = ClarifaiChannel.get_grpc_channel()
|
179 |
+
stub = service_pb2_grpc.V2Stub(channel)
|
180 |
+
|
181 |
+
metadata = (('authorization', 'Key ' + CLARIFAI_PAT),)
|
182 |
+
|
183 |
+
userDataObject = resources_pb2.UserAppIDSet(user_id=MODERATION_USER_ID, app_id=MODERATION_APP_ID)
|
184 |
+
|
185 |
+
# To use a local text file, uncomment the following lines
|
186 |
+
# with open(TEXT_FILE_LOCATION, "rb") as f:
|
187 |
+
# file_bytes = f.read()
|
188 |
+
|
189 |
+
post_model_outputs_response = stub.PostModelOutputs(
|
190 |
+
service_pb2.PostModelOutputsRequest(
|
191 |
+
user_app_id=userDataObject,
|
192 |
+
# The userDataObject is created in the overview and is required when using a PAT
|
193 |
+
model_id=MODERATION_MODEL_ID,
|
194 |
+
version_id=MODERATION_MODEL_VERSION_ID, # This is optional. Defaults to the latest model version
|
195 |
+
inputs=[
|
196 |
+
resources_pb2.Input(
|
197 |
+
data=resources_pb2.Data(
|
198 |
+
text=resources_pb2.Text(
|
199 |
+
raw=text
|
200 |
+
)
|
201 |
+
)
|
202 |
+
)
|
203 |
+
]
|
204 |
+
),
|
205 |
+
metadata=metadata
|
206 |
+
)
|
207 |
+
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
|
208 |
+
print(post_model_outputs_response.status)
|
209 |
+
raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)
|
210 |
+
|
211 |
+
# Since we have one input, one output will exist here
|
212 |
+
output = post_model_outputs_response.outputs[0]
|
213 |
+
moderation_reasons = ""
|
214 |
+
intervention_required = False
|
215 |
+
for concept in output.data.concepts:
|
216 |
+
if concept.value > MODERATION_THRESHOLD:
|
217 |
+
moderation_reasons += concept.name + ","
|
218 |
+
intervention_required = True
|
219 |
+
|
220 |
+
return moderation_reasons, intervention_required
|
221 |
+
|
222 |
+
|
223 |
+
if st.session_state.vector_store is not None:
|
224 |
+
LLM_USER_ID = 'openai'
|
225 |
+
LLM_APP_ID = 'chat-completion'
|
226 |
+
# Change these to whatever model and text URL you want to use
|
227 |
+
LLM_MODEL_ID = 'GPT-3_5-turbo'
|
228 |
+
llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID)
|
229 |
+
|
230 |
+
USER_ID = 'openai'
|
231 |
+
APP_ID = 'embed'
|
232 |
+
# Change these to whatever model and text URL you want to use
|
233 |
+
MODEL_ID = 'text-embedding-ada'
|
234 |
+
embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
|
235 |
+
embed_model = LangchainEmbedding(embeddings)
|
236 |
+
|
237 |
+
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
|
238 |
+
|
239 |
+
index = load_index_from_storage(
|
240 |
+
StorageContext.from_defaults(persist_dir=st.session_state.vector_store),
|
241 |
+
service_context=service_context
|
242 |
+
)
|
243 |
+
|
244 |
+
retriever = VectorIndexRetriever(
|
245 |
+
index=index,
|
246 |
+
similarity_top_k=2,
|
247 |
+
)
|
248 |
+
# configure response synthesizer
|
249 |
+
response_synthesizer = get_response_synthesizer(
|
250 |
+
response_mode="tree_summarize", service_context=service_context
|
251 |
+
)
|
252 |
+
|
253 |
+
# assemble query engine
|
254 |
+
query_engine = RetrieverQueryEngine(
|
255 |
+
retriever=retriever,
|
256 |
+
response_synthesizer=response_synthesizer,
|
257 |
+
)
|
258 |
+
|
259 |
+
custom_chat_history = []
|
260 |
+
for message in st.session_state.messages:
|
261 |
+
custom_message = ChatMessage(role=message["role"], content=message["content"])
|
262 |
+
custom_chat_history.append(custom_message)
|
263 |
+
|
264 |
+
chat_engine = CondenseQuestionChatEngine.from_defaults(service_context=service_context, query_engine=query_engine,
|
265 |
+
verbose=True,
|
266 |
+
chat_history=custom_chat_history)
|
267 |
+
|
268 |
+
if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history
|
269 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
270 |
+
|
271 |
+
st.button('Reset Chat', on_click=reset_conversation)
|
272 |
+
|
273 |
+
for message in st.session_state.messages: # Display the prior chat messages
|
274 |
+
with st.chat_message(message["role"]):
|
275 |
+
st.write(message["content"])
|
276 |
+
|
277 |
+
# If last message is not from assistant, generate a new response
|
278 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
279 |
+
with st.chat_message("assistant"):
|
280 |
+
with st.spinner("Thinking..."):
|
281 |
+
try:
|
282 |
+
reason, intervene = moderate_text(prompt)
|
283 |
+
except Exception as e:
|
284 |
+
print(str(e))
|
285 |
+
reason = ''
|
286 |
+
intervene = False
|
287 |
+
if not intervene:
|
288 |
+
response = chat_engine.chat(prompt)
|
289 |
+
st.write(response.response)
|
290 |
+
message = {"role": "assistant", "content": response.response}
|
291 |
+
st.session_state.messages.append(message) # Add response to message history
|
292 |
+
else:
|
293 |
+
response = f"This query cannot be processed as it has been detected to be {reason}"
|
294 |
+
st.write(response)
|
295 |
+
message = {"role": "assistant", "content": response.response}
|
296 |
+
st.session_state.messages.append(message)
|