Spaces:
Runtime error
Runtime error
File size: 7,058 Bytes
11120b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the MIT License.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# MIT License for more details.
import random
import numpy as np
import torch
import torchaudio as ta
from text import text_to_sequence, cmudict
from text.symbols import symbols
from utils import parse_filelist, intersperse
from model.utils import fix_len_compatibility
from params import seed as random_seed
import sys
sys.path.insert(0, 'hifi-gan')
from meldataset import mel_spectrogram
class TextMelDataset(torch.utils.data.Dataset):
def __init__(self, filelist_path, cmudict_path, add_blank=True,
n_fft=1024, n_mels=80, sample_rate=22050,
hop_length=256, win_length=1024, f_min=0., f_max=8000):
self.filepaths_and_text = parse_filelist(filelist_path)
self.cmudict = cmudict.CMUDict(cmudict_path)
self.add_blank = add_blank
self.n_fft = n_fft
self.n_mels = n_mels
self.sample_rate = sample_rate
self.hop_length = hop_length
self.win_length = win_length
self.f_min = f_min
self.f_max = f_max
random.seed(random_seed)
random.shuffle(self.filepaths_and_text)
def get_pair(self, filepath_and_text):
filepath, text = filepath_and_text[0], filepath_and_text[1]
text = self.get_text(text, add_blank=self.add_blank)
mel = self.get_mel(filepath)
return (text, mel)
def get_mel(self, filepath):
audio, sr = ta.load(filepath)
assert sr == self.sample_rate
mel = mel_spectrogram(audio, self.n_fft, self.n_mels, self.sample_rate, self.hop_length,
self.win_length, self.f_min, self.f_max, center=False).squeeze()
return mel
def get_text(self, text, add_blank=True):
text_norm = text_to_sequence(text, dictionary=self.cmudict)
if self.add_blank:
text_norm = intersperse(text_norm, len(symbols)) # add a blank token, whose id number is len(symbols)
text_norm = torch.IntTensor(text_norm)
return text_norm
def __getitem__(self, index):
text, mel = self.get_pair(self.filepaths_and_text[index])
item = {'y': mel, 'x': text}
return item
def __len__(self):
return len(self.filepaths_and_text)
def sample_test_batch(self, size):
idx = np.random.choice(range(len(self)), size=size, replace=False)
test_batch = []
for index in idx:
test_batch.append(self.__getitem__(index))
return test_batch
class TextMelBatchCollate(object):
def __call__(self, batch):
B = len(batch)
y_max_length = max([item['y'].shape[-1] for item in batch])
y_max_length = fix_len_compatibility(y_max_length)
x_max_length = max([item['x'].shape[-1] for item in batch])
n_feats = batch[0]['y'].shape[-2]
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
x = torch.zeros((B, x_max_length), dtype=torch.long)
y_lengths, x_lengths = [], []
for i, item in enumerate(batch):
y_, x_ = item['y'], item['x']
y_lengths.append(y_.shape[-1])
x_lengths.append(x_.shape[-1])
y[i, :, :y_.shape[-1]] = y_
x[i, :x_.shape[-1]] = x_
y_lengths = torch.LongTensor(y_lengths)
x_lengths = torch.LongTensor(x_lengths)
return {'x': x, 'x_lengths': x_lengths, 'y': y, 'y_lengths': y_lengths}
class TextMelSpeakerDataset(torch.utils.data.Dataset):
def __init__(self, filelist_path, cmudict_path, add_blank=True,
n_fft=1024, n_mels=80, sample_rate=22050,
hop_length=256, win_length=1024, f_min=0., f_max=8000):
super().__init__()
self.filelist = parse_filelist(filelist_path, split_char='|')
self.cmudict = cmudict.CMUDict(cmudict_path)
self.n_fft = n_fft
self.n_mels = n_mels
self.sample_rate = sample_rate
self.hop_length = hop_length
self.win_length = win_length
self.f_min = f_min
self.f_max = f_max
self.add_blank = add_blank
random.seed(random_seed)
random.shuffle(self.filelist)
def get_triplet(self, line):
filepath, text, speaker = line[0], line[1], line[2]
text = self.get_text(text, add_blank=self.add_blank)
mel = self.get_mel(filepath)
speaker = self.get_speaker(speaker)
return (text, mel, speaker)
def get_mel(self, filepath):
audio, sr = ta.load(filepath)
assert sr == self.sample_rate
mel = mel_spectrogram(audio, self.n_fft, self.n_mels, self.sample_rate, self.hop_length,
self.win_length, self.f_min, self.f_max, center=False).squeeze()
return mel
def get_text(self, text, add_blank=True):
text_norm = text_to_sequence(text, dictionary=self.cmudict)
if self.add_blank:
text_norm = intersperse(text_norm, len(symbols)) # add a blank token, whose id number is len(symbols)
text_norm = torch.LongTensor(text_norm)
return text_norm
def get_speaker(self, speaker):
speaker = torch.LongTensor([int(speaker)])
return speaker
def __getitem__(self, index):
text, mel, speaker = self.get_triplet(self.filelist[index])
item = {'y': mel, 'x': text, 'spk': speaker}
return item
def __len__(self):
return len(self.filelist)
def sample_test_batch(self, size):
idx = np.random.choice(range(len(self)), size=size, replace=False)
test_batch = []
for index in idx:
test_batch.append(self.__getitem__(index))
return test_batch
class TextMelSpeakerBatchCollate(object):
def __call__(self, batch):
B = len(batch)
y_max_length = max([item['y'].shape[-1] for item in batch])
y_max_length = fix_len_compatibility(y_max_length)
x_max_length = max([item['x'].shape[-1] for item in batch])
n_feats = batch[0]['y'].shape[-2]
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
x = torch.zeros((B, x_max_length), dtype=torch.long)
y_lengths, x_lengths = [], []
spk = []
for i, item in enumerate(batch):
y_, x_, spk_ = item['y'], item['x'], item['spk']
y_lengths.append(y_.shape[-1])
x_lengths.append(x_.shape[-1])
y[i, :, :y_.shape[-1]] = y_
x[i, :x_.shape[-1]] = x_
spk.append(spk_)
y_lengths = torch.LongTensor(y_lengths)
x_lengths = torch.LongTensor(x_lengths)
spk = torch.cat(spk, dim=0)
return {'x': x, 'x_lengths': x_lengths, 'y': y, 'y_lengths': y_lengths, 'spk': spk}
|