Spaces:
Configuration error
Configuration error
import shutil | |
import streamlit as st | |
st.set_page_config( | |
page_title="RAG Configuration", | |
page_icon="🤖", | |
layout="wide", | |
initial_sidebar_state="collapsed" | |
) | |
import re | |
import os | |
import spire.pdf | |
import fitz | |
from src.Databases import * | |
from langchain.text_splitter import * | |
from sentence_transformers import SentenceTransformer, CrossEncoder | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from transformers import (AutoFeatureExtractor, AutoModel, AutoImageProcessor) | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import PyPDF2 | |
class SentenceTransformerEmbeddings: | |
""" | |
Wrapper Class for SentenceTransformer Class | |
""" | |
def __init__(self, model_name: str): | |
""" | |
Initiliases a Sentence Transformer | |
""" | |
self.model = SentenceTransformer(model_name) | |
def embed_documents(self, texts): | |
""" | |
Returns a list of embeddings for the given texts. | |
""" | |
return self.model.encode(texts, convert_to_tensor=True).tolist() | |
def embed_query(self, text): | |
""" | |
Returns a list of embeddings for the given text. | |
""" | |
return self.model.encode(text, convert_to_tensor=True).tolist() | |
def settings(): | |
return HuggingFaceEmbedding(model_name="BAAI/bge-base-en") | |
def pine_embedding_model(): | |
return SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2") # 784 dimension + euclidean | |
def weaviate_embedding_model(): | |
return SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
def load_image_model(model): | |
extractor = AutoFeatureExtractor.from_pretrained(model) | |
im_model = AutoModel.from_pretrained(model) | |
return extractor, im_model | |
def load_bi_encoder(): | |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2", model_kwargs={"device": "cpu"}) | |
def pine_embedding_model(): | |
return SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2") # 784 dimension + euclidean | |
def weaviate_embedding_model(): | |
return SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
def load_cross(): | |
return CrossEncoder("cross-encoder/ms-marco-TinyBERT-L-2-v2", max_length=512, device="cpu") | |
def pine_cross_encoder(): | |
return CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2", max_length=512, device="cpu") | |
def weaviate_cross_encoder(): | |
return CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", max_length=512, device="cpu") | |
def load_chat_model(): | |
template = ''' | |
You are an assistant for question-answering tasks. | |
Use the following pieces of retrieved context to answer the question accurately. | |
If the question is not related to the context, just answer 'I don't know'. | |
Question: {question} | |
Context: {context} | |
Answer: | |
''' | |
return HuggingFaceHub( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.1", | |
model_kwargs={"temperature": 0.5, "max_length": 64, "max_new_tokens": 512, "query_wrapper_prompt": template} | |
) | |
def load_q_model(): | |
return HuggingFaceHub( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
model_kwargs={"temperature": 0.5, "max_length": 64, "max_new_tokens": 512} | |
) | |
def load_image_model(model): | |
extractor = AutoFeatureExtractor.from_pretrained(model) | |
im_model = AutoModel.from_pretrained(model) | |
return extractor, im_model | |
def load_nomic_model(): | |
return AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5"), AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", | |
trust_remote_code=True) | |
def vector_database_prep(file): | |
def data_prep(file): | |
def findWholeWord(w): | |
return re.compile(r'\b{0}\b'.format(re.escape(w)), flags=re.IGNORECASE).search | |
file_name = file.name | |
pdf_file_path = os.path.join(os.getcwd(), 'pdfs', file_name) | |
image_folder = os.path.join(os.getcwd(), f'figures_{file_name}') | |
if not os.path.exists(image_folder): | |
os.makedirs(image_folder) | |
# everything down here is wrt pages dir | |
print('1. folder made') | |
with spire.pdf.PdfDocument() as doc: | |
doc.LoadFromFile(pdf_file_path) | |
images = [] | |
for page_num in range(doc.Pages.Count): | |
page = doc.Pages[page_num] | |
for image_num in range(len(page.ImagesInfo)): | |
imageFileName = os.path.join(image_folder, f'figure-{page_num}-{image_num}.png') | |
image = page.ImagesInfo[image_num] #This retrieve the image from the current pdf | |
image.Image.Save(imageFileName) #This line save the image at spcified location for the further use in hadr disk | |
os.chmod(imageFileName, 0o777) | |
print("os.chmod(imageFileName, 0o777)") #This provide permission for the current image to edit in the another process | |
images.append({ | |
"image_file_name": imageFileName, | |
"image": image | |
}) #Image object and name of the iamge save in the lsit | |
print('2. image extraction done') | |
image_info = [] | |
for image_file in os.listdir(image_folder): | |
if image_file.endswith('.png'): #This confirm all the images are are in png form | |
image_info.append({ | |
"image_file_name": image_file[:-4], #image name without .png | |
"image": Image.open(os.path.join(image_folder, image_file)), #This is location where that image is stored | |
"pg_no": int(image_file.split('-')[1]) #Image page number where it is present | |
}) | |
print('3. temporary') | |
figures = [] | |
with fitz.open(pdf_file_path) as pdf_file: | |
data = "" | |
for page in pdf_file: | |
text = page.get_text() | |
if not (findWholeWord('table of contents')(text) or findWholeWord('index')(text)): | |
data += text | |
data = data.replace('}', '-') | |
data = data.replace('{', '-') | |
print('4. Data extraction done') | |
hs = [] | |
for i in image_info: #here three things are stored | |
src = i['image_file_name'] + '.png' | |
headers = {'_': []} | |
header = '_' | |
page = pdf_file[i['pg_no']] | |
texts = page.get_text('dict') | |
for block in texts['blocks']: | |
if block['type'] == 0: | |
for line in block['lines']: | |
for span in line['spans']: | |
if 'bol' in span['font'].lower() and not span['text'].isnumeric(): | |
header = span['text'] | |
print("header: ", header) | |
headers[header] = [header] | |
else: | |
headers[header].append(span['text']) | |
try: | |
if findWholeWord('fig')(span['text']): | |
i['image_file_name'] = span['text'] | |
figures.append(span['text'].split('fig')[-1]) | |
elif findWholeWord('figure')(span['text']): | |
i['image_file_name'] = span['text'] | |
figures.append(span['text'].lower().split('figure')[-1]) | |
else: | |
pass | |
except re.error: | |
pass | |
if not i['image_file_name'].endswith('.png'): | |
s = i['image_file_name'] + '.png' | |
i['image_file_name'] = s | |
# os.rename(os.path.join(image_folder, src), os.path.join(image_folder, i['image_file_name'])) | |
hs.append({"image": i, "header": headers}) | |
print('5. header and figures done') | |
figure_contexts = {} | |
for fig in figures: | |
figure_contexts[fig] = [] | |
for page_num in range(len(pdf_file)): | |
page = pdf_file[page_num] | |
texts = page.get_text('dict') | |
for block in texts['blocks']: | |
if block['type'] == 0: | |
for line in block['lines']: | |
for span in line['spans']: | |
if findWholeWord(fig)(span['text']): | |
print('figure mention: ', span['text']) | |
figure_contexts[fig].append(span['text']) | |
print('6. Figure context collected') | |
contexts = [] | |
for h in hs: | |
context = "" | |
for q in h['header'].values(): | |
context += "".join(q) | |
s = pytesseract.image_to_string(h['image']['image']) | |
qwea = context + '\n' + s if len(s) != 0 else context | |
contexts.append(( | |
h['image']['image_file_name'], | |
qwea, | |
h['image']['image'] | |
)) | |
print('7. Overall context collected') | |
image_content = [] | |
for fig in figure_contexts: | |
for c in contexts: | |
if findWholeWord(fig)(c[0]): | |
s = c[1] + '\n' + "\n".join(figure_contexts[fig]) | |
s = str("\n".join( | |
[ | |
"".join([h for h in i.strip() if h.isprintable()]) | |
for i in s.split('\n') | |
if len(i.strip()) != 0 | |
] | |
)) | |
image_content.append(( | |
c[0], | |
s, | |
c[2] | |
)) | |
print('8. Figure context added') | |
return data, image_content | |
# Vector Database objects | |
extractor, i_model = st.session_state['extractor'], st.session_state['image_model'] | |
pinecone_embed = st.session_state['pinecone_embed'] | |
weaviate_embed = st.session_state['weaviate_embed'] | |
vb1 = UnifiedDatabase('vb1', 'lancedb/rag') | |
vb1.model_prep(extractor, i_model, weaviate_embed, | |
RecursiveCharacterTextSplitter(chunk_size=1330, chunk_overlap=35)) | |
vb2 = UnifiedDatabase('vb2', 'lancedb/rag') | |
vb2.model_prep(extractor, i_model, pinecone_embed, | |
RecursiveCharacterTextSplitter(chunk_size=1330, chunk_overlap=35)) | |
vb_list = [vb1, vb2] | |
data, image_content = data_prep(file) | |
for vb in vb_list: | |
vb.upsert(data) | |
vb.upsert(image_content) # image_cont = dict[image_file_path, context, PIL] | |
return vb_list | |
# Function to extract text from PDF | |
# def read_pdf(pdf_file): #this is the one change i have done here | |
# try: | |
# # Open the PDF file | |
# with open(pdf_file, 'rb') as file: | |
# reader = PyPDF2.PdfReader(file) | |
# pdf_text = "" | |
# # Extract text from each page | |
# for page in reader.pages: | |
# pdf_text += page.extract_text() | |
# # Assuming vb_list contains tuples of (vb, sp) | |
# for vb, sp in vb_list: | |
# # Ensure `data` is defined properly (in this case, it could be the extracted text) | |
# data = pdf_text | |
# vb.upsert(data, sp) | |
# return vb_list | |
# except Exception as e: | |
# print(f"Error reading or processing the PDF: {e}") | |
# return None | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HUGGINGFACEHUB_API_TOKEN"] | |
os.environ["LANGCHAIN_PROJECT"] = st.secrets["LANGCHAIN_PROJECT"] | |
os.environ["OPENAI_API_KEY"] = st.secrets["GPT_KEY"] | |
st.session_state['pdf_file'] = [] | |
st.session_state['vb_list'] = [] | |
st.session_state['Settings.embed_model'] = settings() | |
st.session_state['processor'], st.session_state['vision_model'] = load_nomic_model() | |
st.session_state['bi_encoder'] = load_bi_encoder() | |
st.session_state['chat_model'] = load_chat_model() | |
st.session_state['cross_model'] = load_cross() | |
st.session_state['q_model'] = load_q_model() | |
st.session_state['extractor'], st.session_state['image_model'] = load_image_model("google/vit-base-patch16-224-in21k") | |
st.session_state['pinecone_embed'] = pine_embedding_model() | |
st.session_state['weaviate_embed'] = weaviate_embedding_model() | |
st.title('Multi-modal RAG based LLM for Information Retrieval') | |
st.subheader('Converse with our Chatbot') | |
st.markdown('Enter a pdf file as a source.') | |
uploaded_file = st.file_uploader("Choose an pdf document...", type=["pdf"], accept_multiple_files=False) | |
if uploaded_file is not None: | |
with open(uploaded_file.name, mode='wb') as w: | |
w.write(uploaded_file.getvalue()) | |
if not os.path.exists(os.path.join(os.getcwd(), 'pdfs')): | |
print("i ma here") | |
os.makedirs(os.path.join(os.getcwd(), 'pdfs')) | |
shutil.move(uploaded_file.name, os.path.join(os.getcwd(), 'pdfs')) | |
st.session_state['pdf_file'] = uploaded_file.name | |
def data_prep(file): | |
def findWholeWord(w): | |
return re.compile(r'\b{0}\b'.format(re.escape(w)), flags=re.IGNORECASE).search | |
file_name = uploaded_file.name | |
pdf_file_path = os.path.join(os.getcwd(), 'pdfs', file_name) | |
image_folder = os.path.join(os.getcwd(), f'figures_{file_name}') #name the image folder | |
if not os.path.exists(image_folder): | |
os.makedirs(image_folder) #make the image folder if folder is not presnt | |
print('1. folder made') | |
with spire.pdf.PdfDocument() as doc: | |
doc.LoadFromFile(pdf_file_path) | |
images = [] | |
for page_num in range(doc.Pages.Count): | |
page = doc.Pages[page_num] | |
for image_num in range(len(page.ImagesInfo)): | |
imageFileName = os.path.join(image_folder, f'figure-{page_num}-{image_num}.png') #name the fir page number and image numer on that image | |
# print(imageFileName) | |
image = page.ImagesInfo[image_num] | |
image.Image.Save(imageFileName) | |
os.chmod(imageFileName, 0o777) | |
images.append({ | |
"image_file_name": imageFileName, | |
"image": image | |
}) | |
return images | |
file_path = os.path.join('pdfs', uploaded_file.name) # Define the full file path | |
with open(file_path, mode='wb') as f: | |
f.write(uploaded_file.getvalue()) # Save the uploaded file to disk | |
img=data_prep(uploaded_file) | |
st.session_state['file_path'] = file_path | |
st.success(f"File uploaded and saved as: {file_path}") | |
if len(img)>0: | |
with st.spinner('Extracting'): | |
vb_list = vector_database_prep(uploaded_file) | |
st.session_state['vb_list'] = vb_list | |
st.switch_page('pages/rag.py') | |
st.experimental_rerun() | |
else: | |
st.switch_page('pages/b.py') | |
# vb_list = read_pdf(uploaded_file) # Corrected to use session state | |
# st.session_state['vb_list'] = vb_list | |
# st.write("vb list is implemtnted") | |
# # Ask the user for a question | |
# question = st.text_input("Enter your question:", "How are names present in the context?") | |
# if st.button("Submit Question"): | |
# # Display the answer to the question | |
# with st.spinner('Fetching the answer...'): | |
# # Assuming query is a function that takes the question as input | |
# answer = req.query(question) | |
# print(answer) | |
# st.success(f"Answer: {answer}") | |