blitzkrieg0000
commited on
Upload 9 files
Browse files- Lib/Const.py +3 -0
- Lib/DetectFaultOnnx.py +272 -0
- Lib/__init__.py +0 -0
- Lib/__pycache__/Const.cpython-312.pyc +0 -0
- Lib/__pycache__/DetectFaultOnnx.cpython-312.pyc +0 -0
- Lib/__pycache__/__init__.cpython-312.pyc +0 -0
- UI/Main.py +85 -0
- UI/__init__.py +0 -0
- dockerfile +17 -0
Lib/Const.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
LABELS = {0: "Eksik Halka", 1: "KIRIK", 2: "Ark izi"}
|
2 |
+
COLOR_MAP = {"Eksik Halka":"#ffffff", "KIRIK":"#0000ff", "Ark izi":"#ff0000"}
|
3 |
+
COLOR_MAP_RGB = {key : [ int(value[1:3], 16), int(value[3:5], 16), int(value[5:7], 16)] for key, value in COLOR_MAP.items()}
|
Lib/DetectFaultOnnx.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
# Model: YOLOv7
|
3 |
+
@inproceedings{wang2023yolov7,
|
4 |
+
title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
|
5 |
+
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
|
6 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
7 |
+
year={2023}
|
8 |
+
}
|
9 |
+
"""
|
10 |
+
import random
|
11 |
+
import time
|
12 |
+
import torch
|
13 |
+
import torchvision
|
14 |
+
import onnxruntime as ort
|
15 |
+
import cv2
|
16 |
+
import numpy as np
|
17 |
+
from Lib.Const import LABELS, COLOR_MAP, COLOR_MAP_RGB
|
18 |
+
|
19 |
+
|
20 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
21 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
22 |
+
if ratio_pad is None: # calculate from img0_shape
|
23 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
24 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
25 |
+
else:
|
26 |
+
gain = ratio_pad[0][0]
|
27 |
+
pad = ratio_pad[1]
|
28 |
+
|
29 |
+
coords[:, [0, 2]] -= pad[0] # x padding
|
30 |
+
coords[:, [1, 3]] -= pad[1] # y padding
|
31 |
+
coords[:, :4] /= gain
|
32 |
+
clip_coords(coords, img0_shape)
|
33 |
+
return coords
|
34 |
+
|
35 |
+
|
36 |
+
def clip_coords(boxes, img_shape):
|
37 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
38 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
39 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
40 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
41 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
42 |
+
|
43 |
+
|
44 |
+
def box_iou(box1, box2):
|
45 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
46 |
+
"""
|
47 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
48 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
49 |
+
Arguments:
|
50 |
+
box1 (Tensor[N, 4])
|
51 |
+
box2 (Tensor[M, 4])
|
52 |
+
Returns:
|
53 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
54 |
+
IoU values for every element in boxes1 and boxes2
|
55 |
+
"""
|
56 |
+
|
57 |
+
def box_area(box):
|
58 |
+
# box = 4xn
|
59 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
60 |
+
|
61 |
+
area1 = box_area(box1.T)
|
62 |
+
area2 = box_area(box2.T)
|
63 |
+
|
64 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
65 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
66 |
+
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
67 |
+
|
68 |
+
|
69 |
+
def xywh2xyxy(x):
|
70 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
71 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
72 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
73 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
74 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
75 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
76 |
+
return y
|
77 |
+
|
78 |
+
|
79 |
+
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=()):
|
80 |
+
"""Runs Non-Maximum Suppression (NMS) on inference results
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
84 |
+
"""
|
85 |
+
|
86 |
+
nc = prediction.shape[2] - 5 # number of classes
|
87 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
88 |
+
|
89 |
+
# Settings
|
90 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
91 |
+
max_det = 300 # maximum number of detections per image
|
92 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
93 |
+
time_limit = 10.0 # seconds to quit after
|
94 |
+
redundant = True # require redundant detections
|
95 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
96 |
+
merge = False # use merge-NMS
|
97 |
+
|
98 |
+
t = time.time()
|
99 |
+
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
100 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
101 |
+
# Apply constraints
|
102 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
103 |
+
x = x[xc[xi]] # confidence
|
104 |
+
|
105 |
+
# Cat apriori labels if autolabelling
|
106 |
+
if labels and len(labels[xi]):
|
107 |
+
l = labels[xi]
|
108 |
+
v = torch.zeros((len(l), nc + 5), device=x.device)
|
109 |
+
v[:, :4] = l[:, 1:5] # box
|
110 |
+
v[:, 4] = 1.0 # conf
|
111 |
+
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
112 |
+
x = torch.cat((x, v), 0)
|
113 |
+
|
114 |
+
# If none remain process next image
|
115 |
+
if not x.shape[0]:
|
116 |
+
continue
|
117 |
+
|
118 |
+
# Compute conf
|
119 |
+
if nc == 1:
|
120 |
+
x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
|
121 |
+
# so there is no need to multiplicate.
|
122 |
+
else:
|
123 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
124 |
+
|
125 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
126 |
+
box = xywh2xyxy(x[:, :4])
|
127 |
+
|
128 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
129 |
+
if multi_label:
|
130 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
131 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
132 |
+
else: # best class only
|
133 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
134 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
135 |
+
|
136 |
+
# Filter by class
|
137 |
+
if classes is not None:
|
138 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
139 |
+
|
140 |
+
# Apply finite constraint
|
141 |
+
# if not torch.isfinite(x).all():
|
142 |
+
# x = x[torch.isfinite(x).all(1)]
|
143 |
+
|
144 |
+
# Check shape
|
145 |
+
n = x.shape[0] # number of boxes
|
146 |
+
if not n: # no boxes
|
147 |
+
continue
|
148 |
+
elif n > max_nms: # excess boxes
|
149 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
150 |
+
|
151 |
+
# Batched NMS
|
152 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
153 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
154 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
155 |
+
if i.shape[0] > max_det: # limit detections
|
156 |
+
i = i[:max_det]
|
157 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
158 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
159 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
160 |
+
weights = iou * scores[None] # box weights
|
161 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
162 |
+
if redundant:
|
163 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
164 |
+
|
165 |
+
output[xi] = x[i]
|
166 |
+
if (time.time() - t) > time_limit:
|
167 |
+
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
168 |
+
break # time limit exceeded
|
169 |
+
|
170 |
+
return output
|
171 |
+
|
172 |
+
|
173 |
+
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
174 |
+
# Resize and pad image while meeting stride-multiple constraints
|
175 |
+
shape = img.shape[:2] # current shape [height, width]
|
176 |
+
if isinstance(new_shape, int):
|
177 |
+
new_shape = (new_shape, new_shape)
|
178 |
+
|
179 |
+
# Scale ratio (new / old)
|
180 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
181 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
182 |
+
r = min(r, 1.0)
|
183 |
+
|
184 |
+
# Compute padding
|
185 |
+
ratio = r, r # width, height ratios
|
186 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
187 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
188 |
+
if auto: # minimum rectangle
|
189 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
190 |
+
elif scaleFill: # stretch
|
191 |
+
dw, dh = 0.0, 0.0
|
192 |
+
new_unpad = (new_shape[1], new_shape[0])
|
193 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
194 |
+
|
195 |
+
dw /= 2 # divide padding into 2 sides
|
196 |
+
dh /= 2
|
197 |
+
|
198 |
+
if shape[::-1] != new_unpad: # resize
|
199 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
200 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
201 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
202 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
203 |
+
return img, ratio, (dw, dh)
|
204 |
+
|
205 |
+
|
206 |
+
def plot_one_box(x, img, color=None, label=None, line_thickness=3):
|
207 |
+
# Plots one bounding box on image img
|
208 |
+
tl = line_thickness or round(0.002 * (img.shape[2] + img.shape[3]) / 2) + 1 # line/font thickness
|
209 |
+
color = color or [random.randint(0, 255) for _ in range(3)]
|
210 |
+
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
211 |
+
cv2.rectangle(img, c1, c2, color, tl, cv2.LINE_AA)
|
212 |
+
|
213 |
+
if label:
|
214 |
+
tf = max(tl - 1, 1) # font thickness
|
215 |
+
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
216 |
+
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
217 |
+
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
218 |
+
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
219 |
+
|
220 |
+
|
221 |
+
print(ort.get_available_providers())
|
222 |
+
session = ort.InferenceSession("Weight/yolov7_ariza.onnx", providers=ort.get_available_providers())
|
223 |
+
|
224 |
+
input_name = session.get_inputs()[0].name
|
225 |
+
print("input name", input_name)
|
226 |
+
input_shape = session.get_inputs()[0].shape
|
227 |
+
print("input shape", input_shape)
|
228 |
+
input_type = session.get_inputs()[0].type
|
229 |
+
print("input type", input_type)
|
230 |
+
output_name = session.get_outputs()[0].name
|
231 |
+
|
232 |
+
|
233 |
+
def DetectFaults(im0, model_threshold=0.25, iou_thres=0.45):
|
234 |
+
# Preprocess
|
235 |
+
img = letterbox(im0, 640, stride=64, auto=True)[0]
|
236 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
237 |
+
img = np.ascontiguousarray(img)
|
238 |
+
image = img.astype(np.float16) / 255.0
|
239 |
+
image = image[np.newaxis, ...]
|
240 |
+
|
241 |
+
|
242 |
+
# Inference
|
243 |
+
results = session.run([output_name], {input_name: image})
|
244 |
+
res = torch.from_numpy(results[0])
|
245 |
+
pred = non_max_suppression(res, conf_thres=model_threshold, iou_thres=iou_thres, classes=None, agnostic=False, multi_label=False, labels=())
|
246 |
+
|
247 |
+
|
248 |
+
# Postprocess
|
249 |
+
print(pred[0].shape)
|
250 |
+
print(pred[0])
|
251 |
+
|
252 |
+
boxes = []
|
253 |
+
classes = []
|
254 |
+
for i, det in enumerate(pred):
|
255 |
+
if len(det):
|
256 |
+
det[:, :4] = scale_coords(image.shape[2:], det[:, :4], im0.shape).round()
|
257 |
+
print(det)
|
258 |
+
for *xyxy, conf, cls in reversed(det):
|
259 |
+
_label = LABELS[int(cls)]
|
260 |
+
plot_one_box(xyxy, im0, label=_label, color=COLOR_MAP_RGB[_label], line_thickness=2)
|
261 |
+
classes.append(int(cls))
|
262 |
+
boxes.append([int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])])
|
263 |
+
|
264 |
+
return im0, boxes, classes
|
265 |
+
|
266 |
+
|
267 |
+
if "__main__" == __name__:
|
268 |
+
im0 = cv2.imread("data/DJI_20240905125342_0004_Z.JPG")
|
269 |
+
img0, boxes = DetectFaults(im0)
|
270 |
+
cv2.imwrite("result.png", im0)
|
271 |
+
# cv2.imshow("image", im0)
|
272 |
+
# cv2.waitKey(0)
|
Lib/__init__.py
ADDED
File without changes
|
Lib/__pycache__/Const.cpython-312.pyc
ADDED
Binary file (670 Bytes). View file
|
|
Lib/__pycache__/DetectFaultOnnx.cpython-312.pyc
ADDED
Binary file (14.4 kB). View file
|
|
Lib/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (211 Bytes). View file
|
|
UI/Main.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append(os.getcwd())
|
4 |
+
|
5 |
+
from Lib.Const import COLOR_MAP, LABELS
|
6 |
+
from Lib.DetectFaultOnnx import DetectFaults
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
demoImages = [
|
12 |
+
"data/DJI_20240905095004_0007_W.JPG",
|
13 |
+
"data/DJI_20240905091530_0003_W.JPG",
|
14 |
+
"data/DJI_20240905094647_0003_W.JPG",
|
15 |
+
"data/DJI_20240905094647_0003_Z.JPG",
|
16 |
+
"data/DJI_20240905101846_0005_W.JPG",
|
17 |
+
"data/16_3450.png",
|
18 |
+
"data/16_3735.png",
|
19 |
+
"data/16_3900.png",
|
20 |
+
"data/19_00350.png",
|
21 |
+
"data/25_00272.png",
|
22 |
+
"data/67_02661.png"
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
def Warning():
|
27 |
+
gr.Info("DGH ARGE YAZILIM DANIŞMANLIK ENERJİ İNŞAAT SAN.TİC.LTD.ŞTİ", duration=0.5)
|
28 |
+
|
29 |
+
with gr.Blocks(css="footer{display:none !important}") as block:
|
30 |
+
gr.Markdown("## Yüksek Gerilim Hattı İzolatörlerinin Arıza Tespiti - Demo")
|
31 |
+
gr.Markdown("**Ark İzi, Kırık ve Eksik İzolatör Hatalarını Tespit Eder**")
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
inputImage = gr.Image(label="Fotoğraf")
|
35 |
+
|
36 |
+
with gr.Column():
|
37 |
+
thresholdSlider = gr.Slider(0, 1, value=0.25, label="Model Eşik Değeri", info="0 ve 1 arası seçiniz.")
|
38 |
+
iouThresholdSlider = gr.Slider(0, 1, value=0.45, label="IOU (Intersection Over Union) Eşik Değeri", info="0 ve 1 arası seçiniz.")
|
39 |
+
with gr.Accordion("Demo Görsellerden Seçebilirsiniz", open=False):
|
40 |
+
imageGallery = gr.Examples(
|
41 |
+
examples=[
|
42 |
+
os.path.join("data", img_name) for img_name in sorted(os.listdir("data"))
|
43 |
+
],
|
44 |
+
inputs=[inputImage],
|
45 |
+
label="Örnekler",
|
46 |
+
cache_examples=False,
|
47 |
+
examples_per_page=7
|
48 |
+
)
|
49 |
+
processButton = gr.Button("Tespit Et")
|
50 |
+
|
51 |
+
results = gr.Textbox(label="Log")
|
52 |
+
gr.HTML("</hr>")
|
53 |
+
processedImageGallery = gr.Gallery(
|
54 |
+
label="Sonuçlar",
|
55 |
+
rows=1,
|
56 |
+
columns=2,
|
57 |
+
object_fit="contain",
|
58 |
+
height="auto"
|
59 |
+
)
|
60 |
+
|
61 |
+
annotatedImage = gr.AnnotatedImage(color_map=COLOR_MAP)
|
62 |
+
|
63 |
+
@processButton.click(outputs=[processedImageGallery, annotatedImage, results], inputs=[inputImage, thresholdSlider, iouThresholdSlider])
|
64 |
+
def Process(image, model_threshold, iouThresholdSlider):
|
65 |
+
if image is None:
|
66 |
+
raise gr.Warning("Lütfen görüntü yükleyiniz veya hazır seçiniz!", duration=3)
|
67 |
+
|
68 |
+
img0, boxes, labels = DetectFaults(image, model_threshold, iouThresholdSlider)
|
69 |
+
|
70 |
+
if len(boxes) == 0:
|
71 |
+
raise gr.Error("Bir Hata ile Karşılaşıldı: Görüntüde Tespit Yapılamadı 💥!", duration=5)
|
72 |
+
|
73 |
+
sections = []
|
74 |
+
for b, c in zip(boxes, labels):
|
75 |
+
sections+=[(b, LABELS[c])]
|
76 |
+
|
77 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
78 |
+
return [img0], (image, sections), "Görüntü İşlendi!"
|
79 |
+
|
80 |
+
block.load(Warning)
|
81 |
+
|
82 |
+
|
83 |
+
block.queue(max_size=10)
|
84 |
+
block.launch(server_name="0.0.0.0", server_port=1071)
|
85 |
+
|
UI/__init__.py
ADDED
File without changes
|
dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime
|
2 |
+
|
3 |
+
ARG DEBIAN_FRONTEND=noninteractive
|
4 |
+
ENV PYTHONUNBUFFERED=1
|
5 |
+
RUN useradd -m -u 1000 user
|
6 |
+
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 --no-install-recommends -y \
|
7 |
+
&& apt-get clean \
|
8 |
+
&& rm -rf /var/lib/apt/lists/*
|
9 |
+
|
10 |
+
RUN pip install --no-cache-dir gradio opencv-python pandas ultralytics onnx onnxruntime
|
11 |
+
|
12 |
+
USER user
|
13 |
+
WORKDIR /app
|
14 |
+
COPY --chown=user ./ /app
|
15 |
+
|
16 |
+
EXPOSE 1071
|
17 |
+
CMD ["python", "/app/UI/Main.py"]
|