|
import cv2 |
|
import numpy as np |
|
import torch |
|
from matplotlib import pyplot as plt |
|
from ultralytics import YOLO |
|
|
|
|
|
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
test_image = "data/DJI_20240905091530_0003_W.JPG" |
|
|
|
LABELS = {0: "Boş", 1: "Çelik Direkler", 2: "Kafes Kule", 3: "Kablo", 4: "Ahşap Kule"} |
|
colorMap = {"Boş":"#ffffff", "Çelik Direkler":"#0000ff", "Kafes Kule":"#ff0000", "Kablo":"#00ff00", "Ahşap Kule":"#ff0000"} |
|
|
|
|
|
model = YOLO("Weight/yolov9c-cable-seg.pt") |
|
model.fuse() |
|
|
|
|
|
def ParseResults(results, threshold=0.5, scale_masks=True): |
|
batches = [] |
|
|
|
SCORES = torch.Tensor([]).to(DEVICE) |
|
CLASSES = torch.Tensor([]).to(DEVICE) |
|
MASKS = torch.Tensor([]).to(DEVICE) |
|
BOXES = torch.Tensor([]).to(DEVICE) |
|
|
|
with torch.no_grad(): |
|
for result in results: |
|
original_shape = result.orig_shape |
|
_scores = result.boxes.conf |
|
_classes = result.boxes.cls |
|
_masks = result.masks.data |
|
_boxes = result.boxes.xyxy |
|
|
|
|
|
conditions = _scores > threshold |
|
SCORES = torch.cat((SCORES, _scores[conditions]), dim=0) |
|
CLASSES = torch.cat((CLASSES, _classes[conditions]), dim=0) |
|
BOXES = torch.cat((BOXES, _boxes[conditions]), dim=0) |
|
mask = _masks[conditions] |
|
if scale_masks: |
|
mask = ScaleMasks(mask, original_shape[:2]) |
|
|
|
MASKS = torch.cat((MASKS, mask), dim=0) |
|
|
|
batches += [(SCORES, CLASSES, MASKS, BOXES)] |
|
|
|
return batches |
|
|
|
|
|
def ScaleMasks(masks: torch.Tensor, shape: tuple) -> torch.Tensor: |
|
masks = masks.unsqueeze(0) |
|
interpolatedMask:torch.Tensor = torch.nn.functional.interpolate(masks, shape, mode="nearest") |
|
interpolatedMask = interpolatedMask.squeeze(0) |
|
return interpolatedMask |
|
|
|
|
|
def DrawResults(image, scores: torch.Tensor, classes: torch.Tensor, masks: torch.Tensor, boxes: torch.Tensor, labels:dict=LABELS, class_filter:list=None): |
|
_image = np.array(image).copy() |
|
_image = cv2.cvtColor(_image, cv2.COLOR_BGR2RGB) |
|
maskCanvas = np.zeros_like(_image) |
|
|
|
|
|
with torch.no_grad(): |
|
scores = scores.cpu().numpy() |
|
classes = classes.cpu().numpy().astype(np.int32) |
|
masks = masks.cpu().numpy() |
|
boxes = boxes.cpu().numpy() |
|
|
|
for score, cls, mask, box in zip(scores, classes, masks, boxes): |
|
label = labels[cls] |
|
|
|
if class_filter and cls not in class_filter: |
|
continue |
|
|
|
box = box.astype(np.int32) |
|
mask = cv2.cvtColor(mask*255, cv2.COLOR_GRAY2BGR).astype(np.uint8) |
|
maskCanvas = cv2.addWeighted(maskCanvas, 1.0, mask, 1.0, 0) |
|
maskCanvas = cv2.rectangle(maskCanvas, (box[0], box[1]), (box[2], box[3]), color=(255, 0, 0), thickness=3) |
|
maskCanvas = cv2.putText(maskCanvas, f"{label} : {score:.2f}", (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color=(255, 0, 0), thickness=2) |
|
|
|
canvas = cv2.addWeighted(_image, 1.0, maskCanvas.astype(np.uint8), 1.0, 0) |
|
return canvas, maskCanvas |
|
|
|
|
|
def RescaleTheMask(orijinal_image, masks): |
|
_masks = [] |
|
for contour in masks: |
|
b_mask = np.zeros(orijinal_image.shape[:2], np.uint8) |
|
contour = contour.astype(np.int32) |
|
|
|
|
|
w = orijinal_image.shape[0] |
|
h = orijinal_image.shape[1] |
|
|
|
mask = cv2.drawContours(b_mask, [contour], -1, (1, 1, 1), cv2.FILLED) |
|
_masks += [mask] |
|
|
|
return _masks |
|
|
|
|
|
|
|
image = cv2.imread(test_image) |
|
|
|
|
|
with torch.no_grad(): |
|
results = model( |
|
image, |
|
save=False, |
|
show_boxes=False, |
|
project="./inference/", |
|
conf=0.5, |
|
iou=0.7, |
|
retina_masks=False |
|
) |
|
|
|
batches = ParseResults(results, threshold=0.5, scale_masks=True) |
|
scores, classes, masks, boxes = batches[0] |
|
|
|
canvas, mask = DrawResults(image, scores, classes, masks, boxes, class_filter=[3]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fig, axs = plt.subplots(2, 2, figsize=(27, 15)) |
|
axs[0][0].imshow(image) |
|
axs[0][0].set_title("Orijinal Görüntü") |
|
|
|
axs[0][1].imshow(mask) |
|
axs[0][1].set_title("Segmentasyon Maskesi") |
|
|
|
|
|
|
|
|
|
axs[1][1].imshow(canvas) |
|
axs[1][1].set_title("Sonuç") |
|
|
|
|
|
|
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|