blazingbunny
commited on
Commit
·
4b1ed8b
1
Parent(s):
20be358
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import textwrap
|
|
|
4 |
|
5 |
st.title('Hugging Face BERT Summarizer')
|
6 |
|
@@ -12,18 +13,27 @@ model = st.sidebar.selectbox("Choose a model", models)
|
|
12 |
|
13 |
uploaded_file = st.file_uploader("Choose a .txt file", type="txt")
|
14 |
|
|
|
|
|
|
|
15 |
# Add slider to the sidebar for the scale value
|
16 |
scale_percentage = st.sidebar.slider('Scale %', min_value=1, max_value=100, value=50)
|
17 |
|
18 |
-
if uploaded_file is not None:
|
19 |
user_input = uploaded_file.read().decode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if st.button('Summarize'):
|
22 |
summarizer = pipeline('summarization', model=model)
|
23 |
summarized_text = ""
|
24 |
|
25 |
-
# Split the text into chunks of approximately 500 words each
|
26 |
-
chunks = textwrap.wrap(
|
27 |
|
28 |
# Summarize each chunk
|
29 |
for chunk in chunks:
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import textwrap
|
4 |
+
import re
|
5 |
|
6 |
st.title('Hugging Face BERT Summarizer')
|
7 |
|
|
|
13 |
|
14 |
uploaded_file = st.file_uploader("Choose a .txt file", type="txt")
|
15 |
|
16 |
+
# Add text input for keywords
|
17 |
+
keywords = st.text_input("Enter keywords (comma-separated)")
|
18 |
+
|
19 |
# Add slider to the sidebar for the scale value
|
20 |
scale_percentage = st.sidebar.slider('Scale %', min_value=1, max_value=100, value=50)
|
21 |
|
22 |
+
if uploaded_file is not None and keywords:
|
23 |
user_input = uploaded_file.read().decode('utf-8')
|
24 |
+
keywords = [keyword.strip() for keyword in keywords.split(",")]
|
25 |
+
|
26 |
+
# Filter sentences based on keywords
|
27 |
+
sentences = re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', user_input)
|
28 |
+
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)]
|
29 |
+
filtered_text = ' '.join(filtered_sentences)
|
30 |
|
31 |
if st.button('Summarize'):
|
32 |
summarizer = pipeline('summarization', model=model)
|
33 |
summarized_text = ""
|
34 |
|
35 |
+
# Split the filtered text into chunks of approximately 500 words each
|
36 |
+
chunks = textwrap.wrap(filtered_text, 500)
|
37 |
|
38 |
# Summarize each chunk
|
39 |
for chunk in chunks:
|