blazingbunny's picture
Update app.py
2b3eca9
raw
history blame
1.63 kB
import streamlit as st
from transformers import pipeline
import textwrap
st.title('Hugging Face BERT Summarizer')
# List of models
models = ["sshleifer/distilbart-cnn-12-6", "facebook/bart-large-cnn", "t5-base", "t5-large", "google/pegasus-newsroom"]
# Dropdown model selector
model = st.sidebar.selectbox("Choose a model", models)
uploaded_file = st.file_uploader("Choose a .txt file", type="txt")
if uploaded_file is not None:
user_input = uploaded_file.read().decode('utf-8')
total_length = len(user_input.split())
# Add sliders to the sidebar
min_length_percentage = st.sidebar.slider('Minimum Length %', min_value=10, max_value=100, value=50)
max_length_percentage = min_length_percentage + 10
st.sidebar.text(f'Maximum Length %: {max_length_percentage}')
if st.button('Summarize'):
summarizer = pipeline('summarization', model=model)
summarized_text = ""
# Split the text into chunks of approximately 500 words each
chunks = textwrap.wrap(user_input, 500)
# Summarize each chunk
for chunk in chunks:
min_length = max(int(total_length * min_length_percentage / 100), 1) # Calculate min_length based on the percentage of the total length
max_length = int(total_length * max_length_percentage / 100) # Calculate max_length based on the percentage of the total length
summarized = summarizer(chunk, max_length=max_length, min_length=min_length, do_sample=False)
summarized_text += summarized[0]['summary_text'] + " "
st.text_area('Summarized Text', summarized_text, height=200)