import gradio as gr import numpy as np import spaces import torch import spaces import random from diffusers import FluxControlPipeline, FluxTransformer2DModel from controlnet_aux import CannyDetector MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", revision="refs/pr/1", torch_dtype=torch.bfloat16).to("cuda") processor = CannyDetector() @spaces.GPU def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024) image = pipe( prompt=prompt, control_image=control_image, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed), ).images[0] return image, seed css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 Canny [dev] 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) control_image = gr.Image(label="Upload the image for control", type="pil") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch()