current pipeline
Browse files
classification/classification_predict.py
CHANGED
@@ -82,7 +82,7 @@ def classify(img_path):
|
|
82 |
# Initialize your custom model
|
83 |
model = CustomNet(num_ftrs, num_classes)
|
84 |
# Load the trained model weights
|
85 |
-
model.load_state_dict(torch.load('./
|
86 |
|
87 |
# Predict the class probabilities
|
88 |
class_probabilities = predict_single_image(image_path, model)
|
|
|
82 |
# Initialize your custom model
|
83 |
model = CustomNet(num_ftrs, num_classes)
|
84 |
# Load the trained model weights
|
85 |
+
model.load_state_dict(torch.load('./classification/fine_tuned_plant_classifier.pth'))
|
86 |
|
87 |
# Predict the class probabilities
|
88 |
class_probabilities = predict_single_image(image_path, model)
|
detectree2model/predictions/predict.py
CHANGED
@@ -53,15 +53,17 @@ def predict(tile_path, overlap_threshold, confidence_threshold, simplify_value,
|
|
53 |
download_file(url=url, local_filename=trained_model)
|
54 |
|
55 |
cfg = setup_cfg(update_model=trained_model)
|
56 |
-
|
|
|
|
|
57 |
predict_on_data(tile_path, predictor=DefaultPredictor(cfg))
|
58 |
|
59 |
project_to_geojson(tile_path, tile_path + "predictions/", tile_path + "predictions_geo/")
|
60 |
crowns = stitch_crowns(tile_path + "predictions_geo/", 1)
|
61 |
clean = clean_crowns(crowns, overlap_threshold, confidence=confidence_threshold)
|
62 |
clean = clean.set_geometry(clean.simplify(simplify_value))
|
63 |
-
clean.to_file(store_path + "
|
64 |
|
65 |
-
def run_detectree2(tif_input_path, tile_width=20, tile_height=20, tile_buffer=20, overlap_threshold=0.35, confidence_threshold=0.2, simplify_value=0.2
|
66 |
tile_path = create_tiles(input_path=tif_input_path, tile_width=tile_width, tile_height=tile_height, tile_buffer=tile_buffer)
|
67 |
-
predict(tile_path=tile_path, overlap_threshold=overlap_threshold, confidence_threshold=confidence_threshold, simplify_value=simplify_value, store_path=store_path)
|
|
|
53 |
download_file(url=url, local_filename=trained_model)
|
54 |
|
55 |
cfg = setup_cfg(update_model=trained_model)
|
56 |
+
|
57 |
+
# hash the following line if you have gpu support
|
58 |
+
cfg.MODEL.DEVICE = "cpu"
|
59 |
predict_on_data(tile_path, predictor=DefaultPredictor(cfg))
|
60 |
|
61 |
project_to_geojson(tile_path, tile_path + "predictions/", tile_path + "predictions_geo/")
|
62 |
crowns = stitch_crowns(tile_path + "predictions_geo/", 1)
|
63 |
clean = clean_crowns(crowns, overlap_threshold, confidence=confidence_threshold)
|
64 |
clean = clean.set_geometry(clean.simplify(simplify_value))
|
65 |
+
clean.to_file(store_path + "detectree2_delin.geojson")
|
66 |
|
67 |
+
def run_detectree2(tif_input_path, store_path, tile_width=20, tile_height=20, tile_buffer=20, overlap_threshold=0.35, confidence_threshold=0.2, simplify_value=0.2):
|
68 |
tile_path = create_tiles(input_path=tif_input_path, tile_width=tile_width, tile_height=tile_height, tile_buffer=tile_buffer)
|
69 |
+
predict(tile_path=tile_path, overlap_threshold=overlap_threshold, confidence_threshold=confidence_threshold, simplify_value=simplify_value, store_path=store_path)
|
main.py
CHANGED
@@ -1,25 +1,77 @@
|
|
1 |
from detectree2model.predictions.predict import run_detectree2
|
2 |
-
from polygons_processing.postpprocess_detectree2 import postprocess
|
3 |
from generate_tree_images.generate_tree_images import generate_tree_images
|
4 |
from classification.classification_predict import classify
|
5 |
import os
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from detectree2model.predictions.predict import run_detectree2
|
2 |
+
from polygons_processing.postpprocess_detectree2 import postprocess
|
3 |
from generate_tree_images.generate_tree_images import generate_tree_images
|
4 |
from classification.classification_predict import classify
|
5 |
import os
|
6 |
+
import json
|
7 |
|
8 |
+
def row_to_feature(row):
|
9 |
+
feature = {
|
10 |
+
"id": row["id"],
|
11 |
+
"type": "Feature",
|
12 |
+
"properties": {"Confidence_score": row["Confidence_score"]},
|
13 |
+
"geometry": {"type": "Polygon", "coordinates": [row["coordinates"]]},
|
14 |
+
"species": row['species']
|
15 |
+
}
|
16 |
+
return feature
|
17 |
|
18 |
+
def export_geojson(df, filename):
|
19 |
+
features = [row_to_feature(row) for idx, row in df.iterrows()]
|
20 |
|
21 |
+
feature_collection = {
|
22 |
+
"type": "FeatureCollection",
|
23 |
+
"crs": {"type": "name", "properties": {"name": "urn:ogc:def:crs:EPSG::32720"}},
|
24 |
+
"features": features,
|
25 |
+
}
|
26 |
|
27 |
+
output_geojson = json.dumps(feature_collection)
|
28 |
+
|
29 |
+
with open(f"{filename}.geojson", "w") as f:
|
30 |
+
f.write(output_geojson)
|
31 |
+
|
32 |
+
print(f"GeoJSON data exported to '{filename}.geojson' file.")
|
33 |
+
|
34 |
+
"""
|
35 |
+
tif_input: the file containing a tif that we are analyzing
|
36 |
+
|
37 |
+
tif_file_name: the file name of the tif input. tif_input is the folder in which the tif file lies
|
38 |
+
(detectree2 works with that) but generate_tree_images requires path including the file hence the file name is needed
|
39 |
+
|
40 |
+
output_directory: the directory were all in-between and final files are stored
|
41 |
+
|
42 |
+
generate_tree_images stores the cutout tree images in a separate folder
|
43 |
+
"""
|
44 |
+
|
45 |
+
tif_input = "/Users/jonathanseele/ETH/Hackathons/EcoHackathon/WeCanopy/test/"
|
46 |
+
tif_file_name = "TreeCrownVectorDataset_761588_9673769_20_20_32720"
|
47 |
+
|
48 |
+
current_directory = os.getcwd()
|
49 |
+
output_directory = os.path.join(current_directory, "outputs")
|
50 |
+
if not os.path.exists(output_directory):
|
51 |
+
os.makedirs(output_directory)
|
52 |
+
|
53 |
+
run_detectree2(tif_input, store_path=output_directory)
|
54 |
+
|
55 |
+
processed_output_df = postprocess(output_directory + '/detectree2_delin.geojson')
|
56 |
+
processed_geojson = output_directory + '/processed_delin.geojson'
|
57 |
+
|
58 |
+
generate_tree_images(processed_geojson, tif_input)
|
59 |
+
output_folder = './tree_images'
|
60 |
+
|
61 |
+
all_top_3_list = [] # Initialize an empty list to accumulate all top_3 lists
|
62 |
+
|
63 |
+
for file_name in os.listdir(output_folder):
|
64 |
+
file_path = os.path.join(output_folder, file_name)
|
65 |
+
probs = classify(file_path)
|
66 |
+
top_3 = probs.head(3)
|
67 |
+
top_3_list = [[cls, prob] for cls, prob in top_3.items()]
|
68 |
|
69 |
+
# Accumulate the top_3_list for each file
|
70 |
+
all_top_3_list.append(top_3_list)
|
71 |
+
|
72 |
+
# Assign the accumulated top_3_list to the 'species' column of the dataframe
|
73 |
+
processed_output_df['species'] = all_top_3_list
|
74 |
+
|
75 |
+
final_output_path = 'result'
|
76 |
+
export_geojson(processed_output_df, final_output_path)
|
77 |
+
|
polygons_processing/postpprocess_detectree2.py
CHANGED
@@ -351,6 +351,6 @@ def postprocess(prediction_geojson_path):
|
|
351 |
|
352 |
df_res = process([df])
|
353 |
|
354 |
-
export_df_as_geojson(df=df_res, filename="
|
355 |
|
356 |
return df_res
|
|
|
351 |
|
352 |
df_res = process([df])
|
353 |
|
354 |
+
export_df_as_geojson(df=df_res, filename="processed_delin")
|
355 |
|
356 |
return df_res
|