File size: 10,781 Bytes
0c38b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import torch
import psutil
from pytube import YouTube
import time
import re
import pandas as pd
import pysrt
from pathlib import Path
import gradio as gr
import os
import requests
import json
import base64

os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
os.system('make -C ./whisper.cpp')
os.system('wget https://huggingface.co/datasets/tensorops/ggml-whisper-medium-th-combined/resolve/main/ggml-whisper-medium-th-combined.bin')


num_cores = psutil.cpu_count()
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"


transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE IS: ")
print(device)

videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)


def get_youtube(video_url):
    yt = YouTube(video_url)
    abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by(
        'resolution').desc().first().download()
    return abs_video_path


def speech_to_text(video_file_path):
    """
    # Youtube with translated subtitles using OpenAI Whisper models.
    # Currently supports only Thai audio
    This space allows you to:
    1. Download youtube video with a given url
    2. Watch it in the first video component
    3. Run automatic speech recognition on the video using fast Whisper models
    4. Burn the transcriptions to the original video and watch the video in the 2nd video component

    Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
    This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
    """

    if (video_file_path == None):
        raise ValueError("Error no video input")
    print(video_file_path)
    try:
        _, file_ending = os.path.splitext(f'{video_file_path}')
        print(f'file enging is {file_ending}')
        print("starting conversion to wav")
        os.system(
            f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{video_file_path.replace(file_ending, ".wav")}"')
        print("conversion to wav ready")

        print("starting whisper c++")
        srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
        os.system(f'rm -f {srt_path}')
        os.system(
            f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l "th" -m ./ggml-whisper-medium-th-combined.bin -osrt')
        print("starting whisper done with whisper")
    except Exception as e:
        raise RuntimeError("Error converting video to audio")

    try:

        df = pd.DataFrame(columns=['start', 'end', 'text'])
        srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
        subs = pysrt.open(srt_path)

        objects = []
        for sub in subs:

            start_hours = str(str(sub.start.hours) + "00")[0:2] if len(
                str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
            end_hours = str(str(sub.end.hours) + "00")[0:2] if len(
                str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]

            start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(
                str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
            end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(
                str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]

            start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(
                str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
            end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(
                str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]

            start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
            end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
            objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}',
                           f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])

        for object in objects:
            srt_to_df = {
                'start': [object[1]],
                'end': [object[2]],
                'text': [object[0]]
            }

            df = pd.concat([df, pd.DataFrame(srt_to_df)])

        df.to_csv('subtitles.csv', index=False)

        print("Starting SRT-file creation")
        df.reset_index(inplace=True)
        with open('subtitles.vtt', 'w', encoding="utf-8") as file:
            print("Starting WEBVTT-file creation")

            for i in range(len(df)):
                if i == 0:
                    file.write('WEBVTT')
                    file.write('\n')

                else:
                    file.write(str(i+1))
                    file.write('\n')
                    start = df.iloc[i]['start']

                    file.write(f"{start.strip()}")

                    stop = df.iloc[i]['end']

                    file.write(' --> ')
                    file.write(f"{stop}")
                    file.write('\n')
                    file.writelines(df.iloc[i]['text'])
                    if int(i) != len(df)-1:
                        file.write('\n\n')

        print("WEBVTT DONE")

        with open('subtitles.srt', 'w', encoding="utf-8") as file:
            print("Starting SRT-file creation")

            for i in range(len(df)):
                file.write(str(i+1))
                file.write('\n')
                start = df.iloc[i]['start']

                file.write(f"{start.strip()}")

                stop = df.iloc[i]['end']

                file.write(' --> ')
                file.write(f"{stop}")
                file.write('\n')
                file.writelines(df.iloc[i]['text'])
                if int(i) != len(df)-1:
                    file.write('\n\n')

        print("SRT DONE")
        subtitle_files = ['subtitles.vtt', 'subtitles.srt', 'subtitles.csv']

        return df, subtitle_files

    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)


def burn_srt_to_video(srt_file, video_in):

    print("Starting creation of video wit srt")

    try:
        video_out = video_in.replace('.mp4', '_out.mp4')
        print(os.system('ls -lrth'))
        print(video_in)
        print(video_out)
        command = 'ffmpeg -i "{}" -y -vf subtitles=./subtitles.srt "{}"'.format(
            video_in, video_out)
        os.system(command)

        return video_out

    except Exception as e:
        print(e)
        return video_out


def create_video_player(subtitle_files, video_in):

    with open(video_in, "rb") as file:
        video_base64 = base64.b64encode(file.read())
    with open('./subtitles.vtt', "rb") as file:
        subtitle_base64 = base64.b64encode(file.read())

    video_player = f'''<video id="video" controls preload="metadata">
      <source src="data:video/mp4;base64,{str(video_base64)[2:-1]}" type="video/mp4" />
      <track
        label="Thai"
        kind="subtitles"
        srclang="th"
        src="data:text/vtt;base64,{str(subtitle_base64)[2:-1]}"
        default />
    </video>
    '''
    return video_player


# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_out = gr.Video(label="Video Out", mirror_webcam=False)


df_init = pd.DataFrame(columns=['start', 'end', 'text', 'translation'])

transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=(
    0, "dynamic"), max_rows=10, wrap=True, overflow_row_behaviour='paginate')
transcription_and_translation_df = gr.DataFrame(
    value=df_init, label="Transcription and translation dataframe", max_rows=10, wrap=True, overflow_row_behaviour='paginate')

subtitle_files = gr.File(
    label="Download srt-file",
    file_count="multiple",
    type="file",
    interactive=False,
)

video_player = gr.HTML(
    '<p>video will be played here after you press the button at step 3')

demo = gr.Blocks(css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False
with demo:
    transcription_var = gr.Variable()

    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ### This space allows you to: 
            ##### 1. Download youtube video with a given URL
            ##### 2. Watch it in the first video component
            ##### 3. Run automatic Thai speech recognition on the video using Whisper
            ##### 4. Burn the translations to the original video and watch the video in the 2nd video component
            ''')

        with gr.Column():
            gr.Markdown('''
            ### 1. Insert Youtube URL below. Some test videos below:
            ##### 1. https://www.youtube.com/watch?v=UIHPIESyIXM
            ##### 2. https://www.youtube.com/watch?v=YlfaFK7OFUo
            ''')

    with gr.Row():
        with gr.Column():
            youtube_url_in.render()
            download_youtube_btn = gr.Button("Step 1. Download Youtube video")
            download_youtube_btn.click(get_youtube, [youtube_url_in], [
                video_in])
            print(video_in)

    with gr.Row():
        with gr.Column():
            video_in.render()
            with gr.Column():
                gr.Markdown('''
                ##### Here you can start the transcription process.
                ##### Be aware that processing will take some time.
                ''')
            transcribe_btn = gr.Button("Step 2. Transcribe audio")
            transcribe_btn.click(speech_to_text, [
                                 video_in], [transcription_df, subtitle_files])

    with gr.Row():
        gr.Markdown('''
        ##### Here you will get transcription output
        ##### ''')

    with gr.Row():
        with gr.Column():
            transcription_df.render()

    with gr.Row():
        with gr.Column():
            gr.Markdown(
                '''##### From here, you can download the transcription output in different formats. ''')
            subtitle_files.render()

    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ##### Now press the Step 3. Button to create output video with translated transcriptions
            ##### ''')
            create_video_button = gr.Button(
                "Step 3. Create and add subtitles to video")
            print(video_in)
            create_video_button.click(create_video_player, [subtitle_files, video_in], [
                video_player])
            video_player.render()

demo.launch()