Spaces:
Runtime error
Runtime error
File size: 10,781 Bytes
0c38b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import torch
import psutil
from pytube import YouTube
import time
import re
import pandas as pd
import pysrt
from pathlib import Path
import gradio as gr
import os
import requests
import json
import base64
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
os.system('make -C ./whisper.cpp')
os.system('wget https://huggingface.co/datasets/tensorops/ggml-whisper-medium-th-combined/resolve/main/ggml-whisper-medium-th-combined.bin')
num_cores = psutil.cpu_count()
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE IS: ")
print(device)
videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)
def get_youtube(video_url):
yt = YouTube(video_url)
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by(
'resolution').desc().first().download()
return abs_video_path
def speech_to_text(video_file_path):
"""
# Youtube with translated subtitles using OpenAI Whisper models.
# Currently supports only Thai audio
This space allows you to:
1. Download youtube video with a given url
2. Watch it in the first video component
3. Run automatic speech recognition on the video using fast Whisper models
4. Burn the transcriptions to the original video and watch the video in the 2nd video component
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
"""
if (video_file_path == None):
raise ValueError("Error no video input")
print(video_file_path)
try:
_, file_ending = os.path.splitext(f'{video_file_path}')
print(f'file enging is {file_ending}')
print("starting conversion to wav")
os.system(
f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{video_file_path.replace(file_ending, ".wav")}"')
print("conversion to wav ready")
print("starting whisper c++")
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
os.system(f'rm -f {srt_path}')
os.system(
f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l "th" -m ./ggml-whisper-medium-th-combined.bin -osrt')
print("starting whisper done with whisper")
except Exception as e:
raise RuntimeError("Error converting video to audio")
try:
df = pd.DataFrame(columns=['start', 'end', 'text'])
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
subs = pysrt.open(srt_path)
objects = []
for sub in subs:
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(
str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(
str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(
str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(
str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(
str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(
str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}',
f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])
for object in objects:
srt_to_df = {
'start': [object[1]],
'end': [object[2]],
'text': [object[0]]
}
df = pd.concat([df, pd.DataFrame(srt_to_df)])
df.to_csv('subtitles.csv', index=False)
print("Starting SRT-file creation")
df.reset_index(inplace=True)
with open('subtitles.vtt', 'w', encoding="utf-8") as file:
print("Starting WEBVTT-file creation")
for i in range(len(df)):
if i == 0:
file.write('WEBVTT')
file.write('\n')
else:
file.write(str(i+1))
file.write('\n')
start = df.iloc[i]['start']
file.write(f"{start.strip()}")
stop = df.iloc[i]['end']
file.write(' --> ')
file.write(f"{stop}")
file.write('\n')
file.writelines(df.iloc[i]['text'])
if int(i) != len(df)-1:
file.write('\n\n')
print("WEBVTT DONE")
with open('subtitles.srt', 'w', encoding="utf-8") as file:
print("Starting SRT-file creation")
for i in range(len(df)):
file.write(str(i+1))
file.write('\n')
start = df.iloc[i]['start']
file.write(f"{start.strip()}")
stop = df.iloc[i]['end']
file.write(' --> ')
file.write(f"{stop}")
file.write('\n')
file.writelines(df.iloc[i]['text'])
if int(i) != len(df)-1:
file.write('\n\n')
print("SRT DONE")
subtitle_files = ['subtitles.vtt', 'subtitles.srt', 'subtitles.csv']
return df, subtitle_files
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
def burn_srt_to_video(srt_file, video_in):
print("Starting creation of video wit srt")
try:
video_out = video_in.replace('.mp4', '_out.mp4')
print(os.system('ls -lrth'))
print(video_in)
print(video_out)
command = 'ffmpeg -i "{}" -y -vf subtitles=./subtitles.srt "{}"'.format(
video_in, video_out)
os.system(command)
return video_out
except Exception as e:
print(e)
return video_out
def create_video_player(subtitle_files, video_in):
with open(video_in, "rb") as file:
video_base64 = base64.b64encode(file.read())
with open('./subtitles.vtt', "rb") as file:
subtitle_base64 = base64.b64encode(file.read())
video_player = f'''<video id="video" controls preload="metadata">
<source src="data:video/mp4;base64,{str(video_base64)[2:-1]}" type="video/mp4" />
<track
label="Thai"
kind="subtitles"
srclang="th"
src="data:text/vtt;base64,{str(subtitle_base64)[2:-1]}"
default />
</video>
'''
return video_player
# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_out = gr.Video(label="Video Out", mirror_webcam=False)
df_init = pd.DataFrame(columns=['start', 'end', 'text', 'translation'])
transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=(
0, "dynamic"), max_rows=10, wrap=True, overflow_row_behaviour='paginate')
transcription_and_translation_df = gr.DataFrame(
value=df_init, label="Transcription and translation dataframe", max_rows=10, wrap=True, overflow_row_behaviour='paginate')
subtitle_files = gr.File(
label="Download srt-file",
file_count="multiple",
type="file",
interactive=False,
)
video_player = gr.HTML(
'<p>video will be played here after you press the button at step 3')
demo = gr.Blocks(css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False
with demo:
transcription_var = gr.Variable()
with gr.Row():
with gr.Column():
gr.Markdown('''
### This space allows you to:
##### 1. Download youtube video with a given URL
##### 2. Watch it in the first video component
##### 3. Run automatic Thai speech recognition on the video using Whisper
##### 4. Burn the translations to the original video and watch the video in the 2nd video component
''')
with gr.Column():
gr.Markdown('''
### 1. Insert Youtube URL below. Some test videos below:
##### 1. https://www.youtube.com/watch?v=UIHPIESyIXM
##### 2. https://www.youtube.com/watch?v=YlfaFK7OFUo
''')
with gr.Row():
with gr.Column():
youtube_url_in.render()
download_youtube_btn = gr.Button("Step 1. Download Youtube video")
download_youtube_btn.click(get_youtube, [youtube_url_in], [
video_in])
print(video_in)
with gr.Row():
with gr.Column():
video_in.render()
with gr.Column():
gr.Markdown('''
##### Here you can start the transcription process.
##### Be aware that processing will take some time.
''')
transcribe_btn = gr.Button("Step 2. Transcribe audio")
transcribe_btn.click(speech_to_text, [
video_in], [transcription_df, subtitle_files])
with gr.Row():
gr.Markdown('''
##### Here you will get transcription output
##### ''')
with gr.Row():
with gr.Column():
transcription_df.render()
with gr.Row():
with gr.Column():
gr.Markdown(
'''##### From here, you can download the transcription output in different formats. ''')
subtitle_files.render()
with gr.Row():
with gr.Column():
gr.Markdown('''
##### Now press the Step 3. Button to create output video with translated transcriptions
##### ''')
create_video_button = gr.Button(
"Step 3. Create and add subtitles to video")
print(video_in)
create_video_button.click(create_video_player, [subtitle_files, video_in], [
video_player])
video_player.render()
demo.launch()
|