Spaces:
Sleeping
Sleeping
bintangyosua
commited on
Added files
Browse files- Dockerfile +16 -16
- README.md +13 -13
- app.py +329 -470
- development.md +8 -8
- requirements.txt +15 -5
- test.parquet +3 -0
- train.parquet +3 -0
- val.parquet +3 -0
Dockerfile
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
FROM python:3.12
|
2 |
-
COPY --from=ghcr.io/astral-sh/uv:0.4.20 /uv /bin/uv
|
3 |
-
|
4 |
-
RUN useradd -m -u 1000 user
|
5 |
-
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
-
ENV UV_SYSTEM_PYTHON=1
|
7 |
-
|
8 |
-
WORKDIR /app
|
9 |
-
|
10 |
-
COPY --chown=user ./requirements.txt requirements.txt
|
11 |
-
RUN uv pip install -r requirements.txt
|
12 |
-
|
13 |
-
COPY --chown=user . /app
|
14 |
-
USER user
|
15 |
-
|
16 |
-
CMD ["marimo", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
1 |
+
FROM python:3.12
|
2 |
+
COPY --from=ghcr.io/astral-sh/uv:0.4.20 /uv /bin/uv
|
3 |
+
|
4 |
+
RUN useradd -m -u 1000 user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
ENV UV_SYSTEM_PYTHON=1
|
7 |
+
|
8 |
+
WORKDIR /app
|
9 |
+
|
10 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
11 |
+
RUN uv pip install -r requirements.txt
|
12 |
+
|
13 |
+
COPY --chown=user . /app
|
14 |
+
USER user
|
15 |
+
|
16 |
+
CMD ["marimo", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji: π
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: purple
|
6 |
-
sdk: docker
|
7 |
-
pinned: true
|
8 |
-
license: mit
|
9 |
-
short_description:
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out marimo at <https://github.com/marimo-team/marimo>
|
13 |
-
Check out the configuration reference at <https://huggingface.co/docs/hub/spaces-config-reference>
|
|
|
1 |
+
---
|
2 |
+
title: marimo app template
|
3 |
+
emoji: π
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: docker
|
7 |
+
pinned: true
|
8 |
+
license: mit
|
9 |
+
short_description: Template for deploying a marimo application to HF
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out marimo at <https://github.com/marimo-team/marimo>
|
13 |
+
Check out the configuration reference at <https://huggingface.co/docs/hub/spaces-config-reference>
|
app.py
CHANGED
@@ -1,470 +1,329 @@
|
|
1 |
-
import marimo
|
2 |
-
|
3 |
-
__generated_with = "0.9.
|
4 |
-
app = marimo.App()
|
5 |
-
|
6 |
-
|
7 |
-
@app.cell
|
8 |
-
def __():
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
)
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
"""
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
""
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
)
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
)
|
252 |
-
return
|
253 |
-
|
254 |
-
|
255 |
-
@app.cell(hide_code=True)
|
256 |
-
def __(mo):
|
257 |
-
mo.md(
|
258 |
-
"""
|
259 |
-
##
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
@app.cell(hide_code=True)
|
331 |
-
def __(mo):
|
332 |
-
mo.md(
|
333 |
-
"""
|
334 |
-
## 6. The marimo editor
|
335 |
-
|
336 |
-
Here are some tips to help you get started with the marimo editor.
|
337 |
-
"""
|
338 |
-
)
|
339 |
-
return
|
340 |
-
|
341 |
-
|
342 |
-
@app.cell
|
343 |
-
def __(mo, tips):
|
344 |
-
mo.accordion(tips)
|
345 |
-
return
|
346 |
-
|
347 |
-
|
348 |
-
@app.cell(hide_code=True)
|
349 |
-
def __(mo):
|
350 |
-
mo.md("""## Finally, a fun fact""")
|
351 |
-
return
|
352 |
-
|
353 |
-
|
354 |
-
@app.cell(hide_code=True)
|
355 |
-
def __(mo):
|
356 |
-
mo.md(
|
357 |
-
"""
|
358 |
-
The name "marimo" is a reference to a type of algae that, under
|
359 |
-
the right conditions, clumps together to form a small sphere
|
360 |
-
called a "marimo moss ball". Made of just strands of algae, these
|
361 |
-
beloved assemblages are greater than the sum of their parts.
|
362 |
-
"""
|
363 |
-
)
|
364 |
-
return
|
365 |
-
|
366 |
-
|
367 |
-
@app.cell(hide_code=True)
|
368 |
-
def __():
|
369 |
-
tips = {
|
370 |
-
"Saving": (
|
371 |
-
"""
|
372 |
-
**Saving**
|
373 |
-
|
374 |
-
- _Name_ your app using the box at the top of the screen, or
|
375 |
-
with `Ctrl/Cmd+s`. You can also create a named app at the
|
376 |
-
command line, e.g., `marimo edit app_name.py`.
|
377 |
-
|
378 |
-
- _Save_ by clicking the save icon on the bottom right, or by
|
379 |
-
inputting `Ctrl/Cmd+s`. By default marimo is configured
|
380 |
-
to autosave.
|
381 |
-
"""
|
382 |
-
),
|
383 |
-
"Running": (
|
384 |
-
"""
|
385 |
-
1. _Run a cell_ by clicking the play ( β· ) button on the top
|
386 |
-
right of a cell, or by inputting `Ctrl/Cmd+Enter`.
|
387 |
-
|
388 |
-
2. _Run a stale cell_ by clicking the yellow run button on the
|
389 |
-
right of the cell, or by inputting `Ctrl/Cmd+Enter`. A cell is
|
390 |
-
stale when its code has been modified but not run.
|
391 |
-
|
392 |
-
3. _Run all stale cells_ by clicking the play ( β· ) button on
|
393 |
-
the bottom right of the screen, or input `Ctrl/Cmd+Shift+r`.
|
394 |
-
"""
|
395 |
-
),
|
396 |
-
"Console Output": (
|
397 |
-
"""
|
398 |
-
Console output (e.g., `print()` statements) is shown below a
|
399 |
-
cell.
|
400 |
-
"""
|
401 |
-
),
|
402 |
-
"Creating, Moving, and Deleting Cells": (
|
403 |
-
"""
|
404 |
-
1. _Create_ a new cell above or below a given one by clicking
|
405 |
-
the plus button to the left of the cell, which appears on
|
406 |
-
mouse hover.
|
407 |
-
|
408 |
-
2. _Move_ a cell up or down by dragging on the handle to the
|
409 |
-
right of the cell, which appears on mouse hover.
|
410 |
-
|
411 |
-
3. _Delete_ a cell by clicking the trash bin icon. Bring it
|
412 |
-
back by clicking the undo button on the bottom right of the
|
413 |
-
screen, or with `Ctrl/Cmd+Shift+z`.
|
414 |
-
"""
|
415 |
-
),
|
416 |
-
"Disabling Automatic Execution": (
|
417 |
-
"""
|
418 |
-
Via the notebook settings (gear icon) or footer panel, you
|
419 |
-
can disable automatic execution. This is helpful when
|
420 |
-
working with expensive notebooks or notebooks that have
|
421 |
-
side-effects like database transactions.
|
422 |
-
"""
|
423 |
-
),
|
424 |
-
"Disabling Cells": (
|
425 |
-
"""
|
426 |
-
You can disable a cell via the cell context menu.
|
427 |
-
marimo will never run a disabled cell or any cells that depend on it.
|
428 |
-
This can help prevent accidental execution of expensive computations
|
429 |
-
when editing a notebook.
|
430 |
-
"""
|
431 |
-
),
|
432 |
-
"Code Folding": (
|
433 |
-
"""
|
434 |
-
You can collapse or fold the code in a cell by clicking the arrow
|
435 |
-
icons in the line number column to the left, or by using keyboard
|
436 |
-
shortcuts.
|
437 |
-
|
438 |
-
Use the command palette (`Ctrl/Cmd+k`) or a keyboard shortcut to
|
439 |
-
quickly fold or unfold all cells.
|
440 |
-
"""
|
441 |
-
),
|
442 |
-
"Code Formatting": (
|
443 |
-
"""
|
444 |
-
If you have [ruff](https://github.com/astral-sh/ruff) installed,
|
445 |
-
you can format a cell with the keyboard shortcut `Ctrl/Cmd+b`.
|
446 |
-
"""
|
447 |
-
),
|
448 |
-
"Command Palette": (
|
449 |
-
"""
|
450 |
-
Use `Ctrl/Cmd+k` to open the command palette.
|
451 |
-
"""
|
452 |
-
),
|
453 |
-
"Keyboard Shortcuts": (
|
454 |
-
"""
|
455 |
-
Open the notebook menu (top-right) or input `Ctrl/Cmd+Shift+h` to
|
456 |
-
view a list of all keyboard shortcuts.
|
457 |
-
"""
|
458 |
-
),
|
459 |
-
"Configuration": (
|
460 |
-
"""
|
461 |
-
Configure the editor by clicking the gears icon near the top-right
|
462 |
-
of the screen.
|
463 |
-
"""
|
464 |
-
),
|
465 |
-
}
|
466 |
-
return (tips,)
|
467 |
-
|
468 |
-
|
469 |
-
if __name__ == "__main__":
|
470 |
-
app.run()
|
|
|
1 |
+
import marimo
|
2 |
+
|
3 |
+
__generated_with = "0.9.14"
|
4 |
+
app = marimo.App(width="full")
|
5 |
+
|
6 |
+
|
7 |
+
@app.cell(hide_code=True)
|
8 |
+
def __(mo):
|
9 |
+
mo.md(
|
10 |
+
"""
|
11 |
+
# Political Ideologies Analysis
|
12 |
+
|
13 |
+
This project provides a detailed analysis of political ideologies using data from the Huggingface Political Ideologies dataset. The code leverages various data science libraries and visualization tools to map, analyze, and visualize political ideology text data.
|
14 |
+
Project Structure
|
15 |
+
|
16 |
+
This analysis is based on huggingface dataset repository. <br>
|
17 |
+
You can visit right [here](https://huggingface.co/datasets/JyotiNayak/political_ideologies)
|
18 |
+
"""
|
19 |
+
)
|
20 |
+
return
|
21 |
+
|
22 |
+
|
23 |
+
@app.cell(hide_code=True)
|
24 |
+
def __():
|
25 |
+
import marimo as mo
|
26 |
+
import pandas as pd
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
import matplotlib.pyplot as plt
|
30 |
+
import seaborn as sns
|
31 |
+
import altair as alt
|
32 |
+
|
33 |
+
from gensim.models import Word2Vec
|
34 |
+
from sklearn.manifold import TSNE
|
35 |
+
|
36 |
+
mo.md("""
|
37 |
+
## 1. Import all libraries needed
|
38 |
+
|
39 |
+
The initial cells import the necessary libraries for data handling, visualization, and word embedding.
|
40 |
+
""")
|
41 |
+
return TSNE, Word2Vec, alt, mo, np, pd, plt, sns
|
42 |
+
|
43 |
+
|
44 |
+
@app.cell(hide_code=True)
|
45 |
+
def __(mo):
|
46 |
+
mo.md(
|
47 |
+
"""
|
48 |
+
Here are the mapped of label and issue type columns.
|
49 |
+
|
50 |
+
```yaml
|
51 |
+
Label Mapping: {'conservative': 0, 'liberal': 1 }
|
52 |
+
Issue Type Mapping: {
|
53 |
+
'economic': 0, 'environmental': 1,
|
54 |
+
'family/gender': 2, 'geo-political and foreign policy': 3,
|
55 |
+
'political': 4, 'racial justice and immigration': 5,
|
56 |
+
'religious': 6, 'social, health and education': 7
|
57 |
+
}
|
58 |
+
```
|
59 |
+
"""
|
60 |
+
)
|
61 |
+
return
|
62 |
+
|
63 |
+
|
64 |
+
@app.cell(hide_code=True)
|
65 |
+
def __(mo, pd):
|
66 |
+
df = pd.concat(
|
67 |
+
[pd.read_parquet(f'{name}.parquet') for name in ['train', 'val', 'test']],
|
68 |
+
axis=0,
|
69 |
+
)
|
70 |
+
|
71 |
+
df = df.drop('__index_level_0__', axis=1)
|
72 |
+
|
73 |
+
mo.md("""
|
74 |
+
## 2. Dataset Loading
|
75 |
+
|
76 |
+
The dataset files (`train.parquet`, `val.parquet`, and `test.parquet`) are loaded, concatenated, and cleaned to form a single DataFrame (df). Columns are mapped to readable labels for ease of understanding.
|
77 |
+
""")
|
78 |
+
return (df,)
|
79 |
+
|
80 |
+
|
81 |
+
@app.cell(hide_code=True)
|
82 |
+
def __():
|
83 |
+
label_mapping = {
|
84 |
+
'conservative': 0,
|
85 |
+
'liberal': 1
|
86 |
+
}
|
87 |
+
|
88 |
+
issue_type_mapping = {
|
89 |
+
'economic': 0,
|
90 |
+
'environmental': 1,
|
91 |
+
'family/gender': 2,
|
92 |
+
'geo-political and foreign policy': 3,
|
93 |
+
'political': 4,
|
94 |
+
'racial justice and immigration': 5,
|
95 |
+
'religious': 6,
|
96 |
+
'social, health and education': 7
|
97 |
+
}
|
98 |
+
return issue_type_mapping, label_mapping
|
99 |
+
|
100 |
+
|
101 |
+
@app.cell(hide_code=True)
|
102 |
+
def __(issue_type_mapping, label_mapping):
|
103 |
+
label_mapping_reversed = {v: k for k, v in label_mapping.items()}
|
104 |
+
issue_type_mapping_reversed = {v: k for k, v in issue_type_mapping.items()}
|
105 |
+
|
106 |
+
print(label_mapping_reversed)
|
107 |
+
print(issue_type_mapping_reversed)
|
108 |
+
return issue_type_mapping_reversed, label_mapping_reversed
|
109 |
+
|
110 |
+
|
111 |
+
@app.cell(hide_code=True)
|
112 |
+
def __(df, issue_type_mapping_reversed, label_mapping_reversed, mo):
|
113 |
+
df['label_text'] = df['label'].replace(label_mapping_reversed)
|
114 |
+
df['issue_type_text'] = df['issue_type'].replace(issue_type_mapping_reversed)
|
115 |
+
|
116 |
+
labels_grouped = df['label_text'].value_counts().rename_axis('label_text').reset_index(name='counts')
|
117 |
+
issue_types_grouped = (
|
118 |
+
df["issue_type_text"]
|
119 |
+
.value_counts()
|
120 |
+
.rename_axis("issue_type_text")
|
121 |
+
.reset_index(name="counts")
|
122 |
+
)
|
123 |
+
|
124 |
+
mo.md("""
|
125 |
+
## 3. Mapping Labels and Issue Types
|
126 |
+
|
127 |
+
Two dictionaries map labels (conservative and liberal) and issue types (e.g., economic, environmental, etc.) to numerical values for machine learning purposes. Reversed mappings are created to convert numerical labels back into their text form.
|
128 |
+
""")
|
129 |
+
return issue_types_grouped, labels_grouped
|
130 |
+
|
131 |
+
|
132 |
+
@app.cell(hide_code=True)
|
133 |
+
def __(df):
|
134 |
+
df.iloc[:, :6].head(7)
|
135 |
+
return
|
136 |
+
|
137 |
+
|
138 |
+
@app.cell(hide_code=True)
|
139 |
+
def __(mo):
|
140 |
+
mo.md(
|
141 |
+
"""
|
142 |
+
## 4. Visualizing Data Distributions
|
143 |
+
|
144 |
+
Bar plots visualize the proportions of conservative vs. liberal ideologies and the count of different issue types. These provide an overview of the dataset composition.
|
145 |
+
"""
|
146 |
+
)
|
147 |
+
return
|
148 |
+
|
149 |
+
|
150 |
+
@app.cell(hide_code=True)
|
151 |
+
def __(alt, labels_grouped, mo):
|
152 |
+
mo.ui.altair_chart(
|
153 |
+
alt.Chart(labels_grouped).mark_bar(
|
154 |
+
fill='#4C78A8',
|
155 |
+
cursor='pointer',
|
156 |
+
).encode(
|
157 |
+
x=alt.X('label_text', axis=alt.Axis(labelAngle=0)),
|
158 |
+
y='counts:Q'
|
159 |
+
)
|
160 |
+
)
|
161 |
+
return
|
162 |
+
|
163 |
+
|
164 |
+
@app.cell(hide_code=True)
|
165 |
+
def __(alt, issue_types_grouped, mo):
|
166 |
+
mo.ui.altair_chart(
|
167 |
+
alt.Chart(issue_types_grouped)
|
168 |
+
.mark_bar(
|
169 |
+
fill="#4C78A8",
|
170 |
+
cursor="pointer",
|
171 |
+
)
|
172 |
+
.encode(
|
173 |
+
x=alt.X(
|
174 |
+
"issue_type_text:O",
|
175 |
+
axis=alt.Axis(
|
176 |
+
labelAngle=-10, labelAlign="center", labelPadding=10
|
177 |
+
),
|
178 |
+
),
|
179 |
+
y="counts:Q",
|
180 |
+
)
|
181 |
+
)
|
182 |
+
return
|
183 |
+
|
184 |
+
|
185 |
+
@app.cell(hide_code=True)
|
186 |
+
def __(mo):
|
187 |
+
mo.md(
|
188 |
+
"""
|
189 |
+
## 5. Word Embedding with Word2Vec
|
190 |
+
|
191 |
+
Using Word2Vec, word embeddings are created from text statements in the dataset. The model trains on tokenized sentences, generating a 100-dimensional embedding for each word. Statements are averaged to form document-level embeddings.
|
192 |
+
"""
|
193 |
+
)
|
194 |
+
return
|
195 |
+
|
196 |
+
|
197 |
+
@app.cell(hide_code=True)
|
198 |
+
def __(Word2Vec, df):
|
199 |
+
df['tokens'] = df['statement'].apply(lambda x: x.lower().split())
|
200 |
+
word2vec_model = Word2Vec(sentences=df['tokens'], vector_size=100, window=5, min_count=1, seed=0)
|
201 |
+
return (word2vec_model,)
|
202 |
+
|
203 |
+
|
204 |
+
@app.cell(hide_code=True)
|
205 |
+
def __(np, word2vec_model):
|
206 |
+
def get_doc_embedding(tokens):
|
207 |
+
vectors = [word2vec_model.wv[word] for word in tokens if word in word2vec_model.wv]
|
208 |
+
if vectors:
|
209 |
+
return np.mean(vectors, axis=0)
|
210 |
+
else:
|
211 |
+
return np.zeros(word2vec_model.vector_size)
|
212 |
+
return (get_doc_embedding,)
|
213 |
+
|
214 |
+
|
215 |
+
@app.cell(hide_code=True)
|
216 |
+
def __(df, get_doc_embedding, np):
|
217 |
+
df['embedding'] = df['tokens'].apply(get_doc_embedding)
|
218 |
+
embeddings_matrix = np.vstack(df['embedding'].values)
|
219 |
+
return (embeddings_matrix,)
|
220 |
+
|
221 |
+
|
222 |
+
@app.cell(hide_code=True)
|
223 |
+
def __(mo):
|
224 |
+
mo.md(
|
225 |
+
"""
|
226 |
+
## 6. Dimensionality Reduction with TSNE
|
227 |
+
|
228 |
+
Embeddings are projected into a 2D space using TSNE for visualization. The embeddings are colored by issue type, showing clusters of similar statements.
|
229 |
+
"""
|
230 |
+
)
|
231 |
+
return
|
232 |
+
|
233 |
+
|
234 |
+
@app.cell(hide_code=True)
|
235 |
+
def __(TSNE, alt, df, embeddings_matrix, plt, sns):
|
236 |
+
tsne = TSNE(n_components=2, random_state=0)
|
237 |
+
tsne_results = tsne.fit_transform(embeddings_matrix)
|
238 |
+
df['x'] = tsne_results[:, 0]
|
239 |
+
df['y'] = tsne_results[:, 1]
|
240 |
+
|
241 |
+
# Brush for selection
|
242 |
+
brush = alt.selection_interval()
|
243 |
+
size = 350
|
244 |
+
|
245 |
+
plt.figure(figsize=(10, 6))
|
246 |
+
sns.scatterplot(data=df, x='x', y='y', hue='issue_type_text', palette='Set1', s=100)
|
247 |
+
plt.title("2D Visualization of Text Data by Ideology (Word2Vec Embeddings)")
|
248 |
+
plt.xlabel("t-SNE Dimension 1")
|
249 |
+
plt.ylabel("t-SNE Dimension 2")
|
250 |
+
plt.legend(title='Ideology')
|
251 |
+
plt.show()
|
252 |
+
return brush, size, tsne, tsne_results
|
253 |
+
|
254 |
+
|
255 |
+
@app.cell(hide_code=True)
|
256 |
+
def __(mo):
|
257 |
+
mo.md(
|
258 |
+
"""
|
259 |
+
## 7. Interactive Visualizations
|
260 |
+
|
261 |
+
Interactive scatter plots in Altair show ideology and issue types in 2D space. A brush selection tool allows users to explore specific points and view tooltip information.
|
262 |
+
|
263 |
+
### Combined Scatter Plot
|
264 |
+
|
265 |
+
Combines the two scatter plots into a side-by-side visualization for direct comparison of ideologies vs. issue types.
|
266 |
+
Running the Code
|
267 |
+
|
268 |
+
Run the code using the marimo.App instance. This notebook can also be run as a standalone Python script:
|
269 |
+
"""
|
270 |
+
)
|
271 |
+
return
|
272 |
+
|
273 |
+
|
274 |
+
@app.cell(hide_code=True)
|
275 |
+
def __(alt, brush, df, mo, size):
|
276 |
+
points1 = alt.Chart(df, height=size, width=size).mark_point().encode(
|
277 |
+
x='x:Q',
|
278 |
+
y='y:Q',
|
279 |
+
color=alt.condition(brush, 'label_text', alt.value('grey')),
|
280 |
+
tooltip=['x:Q', 'y:Q', 'statement:N', 'label_text:N']
|
281 |
+
).add_params(brush).properties(title='By Political Ideologies')
|
282 |
+
|
283 |
+
scatter_chart1 = mo.ui.altair_chart(points1)
|
284 |
+
|
285 |
+
points2 = alt.Chart(df, height=size, width=size).mark_point().encode(
|
286 |
+
x='x:Q',
|
287 |
+
y='y:Q',
|
288 |
+
color=alt.condition(brush, 'issue_type_text', alt.value('grey')),
|
289 |
+
tooltip=['x:Q', 'y:Q', 'statement:N', 'issue_type:N']
|
290 |
+
).add_params(brush).properties(title='By Issue Types')
|
291 |
+
|
292 |
+
scatter_chart2 = mo.ui.altair_chart(points2)
|
293 |
+
|
294 |
+
combined_chart = (scatter_chart1 | scatter_chart2)
|
295 |
+
combined_chart
|
296 |
+
return combined_chart, points1, points2, scatter_chart1, scatter_chart2
|
297 |
+
|
298 |
+
|
299 |
+
@app.cell(hide_code=True)
|
300 |
+
def __(combined_chart):
|
301 |
+
combined_chart.value[['statement', 'label_text', 'issue_type_text']]
|
302 |
+
return
|
303 |
+
|
304 |
+
|
305 |
+
@app.cell(hide_code=True)
|
306 |
+
def __(combined_chart):
|
307 |
+
combined_chart.value['statement']
|
308 |
+
return
|
309 |
+
|
310 |
+
|
311 |
+
@app.cell(hide_code=True)
|
312 |
+
def __(mo):
|
313 |
+
mo.md(
|
314 |
+
r"""
|
315 |
+
## Data Insights
|
316 |
+
|
317 |
+
- Ideology Distribution: Visualizes proportions of conservative and liberal ideologies.
|
318 |
+
- Issue Types: Bar plot reveals the diversity and frequency of issue types in the dataset.
|
319 |
+
- Word Embeddings: Using TSNE for 2D projections helps identify clusters in political statements.
|
320 |
+
- Interactive Exploration: Offers detailed, interactive views on ideology vs. issue type distribution.
|
321 |
+
|
322 |
+
This code provides a thorough analysis pipeline, from data loading to interactive visualizations, enabling an in-depth exploration of political ideologies.
|
323 |
+
"""
|
324 |
+
)
|
325 |
+
return
|
326 |
+
|
327 |
+
|
328 |
+
if __name__ == "__main__":
|
329 |
+
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
development.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
# Development
|
2 |
-
|
3 |
-
## Testing your Dockerfile locally
|
4 |
-
|
5 |
-
```bash
|
6 |
-
docker build -t marimo-app .
|
7 |
-
docker run -it --rm -p 7860:7860 marimo-app
|
8 |
-
```
|
|
|
1 |
+
# Development
|
2 |
+
|
3 |
+
## Testing your Dockerfile locally
|
4 |
+
|
5 |
+
```bash
|
6 |
+
docker build -t marimo-app .
|
7 |
+
docker run -it --rm -p 7860:7860 marimo-app
|
8 |
+
```
|
requirements.txt
CHANGED
@@ -1,5 +1,15 @@
|
|
1 |
-
marimo
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
marimo
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
|
5 |
+
matplotlib
|
6 |
+
seaborn
|
7 |
+
altair
|
8 |
+
|
9 |
+
genism
|
10 |
+
scikit-learn
|
11 |
+
|
12 |
+
# Or a specific version
|
13 |
+
# marimo>=0.9.0
|
14 |
+
|
15 |
+
# Add other dependencies as needed
|
test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:456a6384233fbbabd92593dc17ff9b5aec305a51a63aea36c621c0142c2d0ac3
|
3 |
+
size 71633
|
train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a81fd1847b0a8b57e908bf8e03bc0e020c8f876aedbed45126a17af89adae18e
|
3 |
+
size 552587
|
val.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20dc1daddb20ac5749d4984e9685bbc9e96e1d5d44afec5a144e3acfcf5d7f9e
|
3 |
+
size 75360
|