bintangyosua commited on
Commit
ab89e07
·
verified ·
1 Parent(s): d9b24a3

Upload 8 files

Browse files
Files changed (4) hide show
  1. Dockerfile +16 -16
  2. README.md +36 -4
  3. app.py +78 -1
  4. requirements.txt +16 -17
Dockerfile CHANGED
@@ -1,16 +1,16 @@
1
- FROM python:3.11.4
2
- COPY --from=ghcr.io/astral-sh/uv:0.4.20 /uv /bin/uv
3
-
4
- RUN useradd -m -u 1000 user
5
- ENV PATH="/home/user/.local/bin:$PATH"
6
- ENV UV_SYSTEM_PYTHON=1
7
-
8
- WORKDIR /app
9
-
10
- COPY --chown=user ./requirements.txt requirements.txt
11
- RUN uv pip install -r requirements.txt
12
-
13
- COPY --chown=user . /app
14
- USER user
15
-
16
- CMD ["marimo", "run", "app.py", "--include-code", "--host", "0.0.0.0", "--port", "7860"]
 
1
+ FROM python:3.11.4
2
+ COPY --from=ghcr.io/astral-sh/uv:0.4.20 /uv /bin/uv
3
+
4
+ RUN useradd -m -u 1000 user
5
+ ENV PATH="/home/user/.local/bin:$PATH"
6
+ ENV UV_SYSTEM_PYTHON=1
7
+
8
+ WORKDIR /app
9
+
10
+ COPY --chown=user ./requirements.txt requirements.txt
11
+ RUN uv pip install -r requirements.txt
12
+
13
+ COPY --chown=user . /app
14
+ USER user
15
+
16
+ CMD ["marimo", "run", "app.py", "--include-code", "--host", "0.0.0.0", "--port", "7860"]
README.md CHANGED
@@ -1,13 +1,45 @@
1
  ---
2
- title: marimo app template
3
  emoji: 🍃
4
  colorFrom: indigo
5
  colorTo: purple
6
  sdk: docker
7
  pinned: true
8
  license: mit
9
- short_description: Template for deploying a marimo application to HF
10
  ---
11
 
12
- Check out marimo at <https://github.com/marimo-team/marimo>
13
- Check out the configuration reference at <https://huggingface.co/docs/hub/spaces-config-reference>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Political Ideologies Analysis and Classification
3
  emoji: 🍃
4
  colorFrom: indigo
5
  colorTo: purple
6
  sdk: docker
7
  pinned: true
8
  license: mit
9
+ short_description: Analysis and Classification
10
  ---
11
 
12
+ # Political Ideologies Analysis
13
+
14
+ This project provides a comprehensive analysis of political ideologies using data from the Huggingface Political Ideologies dataset. The analysis involves data preprocessing, mapping ideological labels, and visualizing political statements through Word2Vec embeddings and t-SNE projections. Additionally, an interactive tool is created for exploring political ideologies and their related issue types in a 2D space.
15
+
16
+ ## Project Overview
17
+
18
+ The goal of this project is to analyze the political ideologies dataset to understand the distribution of political ideologies (conservative vs liberal) and their association with various issue types. The analysis involves:
19
+
20
+ - **Data Loading and Cleaning**: Loading, cleaning, and mapping data from the Huggingface dataset.
21
+ - **Label Mapping**: Mapping ideological labels (conservative and liberal) and issue types to numerical values.
22
+ - **Word2Vec Embeddings**: Generating word embeddings for political statements to create vector representations.
23
+ - **Dimensionality Reduction**: Using t-SNE to reduce the dimensionality of embeddings and visualize them in 2D.
24
+ - **Interactive Visualizations**: Visualizing the data using Altair with interactive charts to explore ideology and issue type distributions.
25
+
26
+ ## Dataset
27
+
28
+ The dataset used in this project is the [Political Ideologies dataset](https://huggingface.co/datasets/JyotiNayak/political_ideologies) from Huggingface, which contains political statements along with their corresponding labels (conservative or liberal) and issue types (economic, environmental, social, etc.).
29
+
30
+ ## Requirements
31
+
32
+ - Python 3.x
33
+ - TensorFlow
34
+ - Gensim
35
+ - Pandas
36
+ - NumPy
37
+ - Matplotlib
38
+ - Seaborn
39
+ - Altair
40
+
41
+ You can install the necessary dependencies with:
42
+
43
+ ```bash
44
+ pip install -r requirements.txt
45
+ ```
app.py CHANGED
@@ -33,12 +33,31 @@ def __():
33
  from gensim.models import Word2Vec
34
  from sklearn.manifold import TSNE
35
 
 
 
 
 
36
  mo.md("""
37
  ## 1. Import all libraries needed
38
 
39
  The initial cells import the necessary libraries for data handling, visualization, and word embedding.
40
  """)
41
- return TSNE, Word2Vec, alt, mo, np, pd, plt, sns
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
 
44
  @app.cell(hide_code=True)
@@ -325,5 +344,63 @@ def __(mo):
325
  return
326
 
327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328
  if __name__ == "__main__":
329
  app.run()
 
33
  from gensim.models import Word2Vec
34
  from sklearn.manifold import TSNE
35
 
36
+ import tensorflow as tf
37
+ from tensorflow.keras.models import Sequential
38
+ from tensorflow.keras.layers import Embedding, Bidirectional, LSTM, Dense
39
+
40
  mo.md("""
41
  ## 1. Import all libraries needed
42
 
43
  The initial cells import the necessary libraries for data handling, visualization, and word embedding.
44
  """)
45
+ return (
46
+ Bidirectional,
47
+ Dense,
48
+ Embedding,
49
+ LSTM,
50
+ Sequential,
51
+ TSNE,
52
+ Word2Vec,
53
+ alt,
54
+ mo,
55
+ np,
56
+ pd,
57
+ plt,
58
+ sns,
59
+ tf,
60
+ )
61
 
62
 
63
  @app.cell(hide_code=True)
 
344
  return
345
 
346
 
347
+ @app.cell
348
+ def __(mo):
349
+ mo.md(r"""## Building Bidirection LSTM Model""")
350
+ return
351
+
352
+
353
+ @app.cell
354
+ def __():
355
+ max_length = 100
356
+ embedding_dim = 100
357
+ num_classes = 2
358
+ return embedding_dim, max_length, num_classes
359
+
360
+
361
+ @app.cell
362
+ def __(
363
+ Bidirectional,
364
+ Dense,
365
+ Embedding,
366
+ LSTM,
367
+ Sequential,
368
+ embedding_dim,
369
+ max_length,
370
+ num_classes,
371
+ word2vec_model,
372
+ ):
373
+ model = Sequential()
374
+ model.add(Embedding(input_dim=len(word2vec_model.wv.index_to_key), output_dim=embedding_dim, input_length=max_length))
375
+ model.add(Bidirectional(LSTM(64, return_sequences=False)))
376
+ model.add(Dense(num_classes, activation='softmax'))
377
+ return (model,)
378
+
379
+
380
+ @app.cell
381
+ def __(model):
382
+ model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
383
+ model.summary()
384
+ return
385
+
386
+
387
+ @app.cell
388
+ def __(df, np):
389
+ X = np.vstack(df['embedding'].values)
390
+ y = df['label'].values
391
+ return X, y
392
+
393
+
394
+ @app.cell
395
+ def __(X, model, y):
396
+ model.fit(X, y, epochs=10, batch_size=32, validation_split=0.2)
397
+ return
398
+
399
+
400
+ @app.cell
401
+ def __():
402
+ return
403
+
404
+
405
  if __name__ == "__main__":
406
  app.run()
requirements.txt CHANGED
@@ -1,17 +1,16 @@
1
- marimo
2
- pandas
3
- numpy
4
- scipy==1.10.1
5
- pyarrow
6
-
7
- matplotlib
8
- seaborn
9
- altair
10
-
11
- gensim
12
- scikit-learn
13
-
14
- # Or a specific version
15
- # marimo>=0.9.0
16
-
17
- # Add other dependencies as needed
 
1
+ marimo
2
+ pandas
3
+ numpy
4
+ scipy==1.10.1
5
+
6
+ matplotlib
7
+ seaborn
8
+ altair
9
+
10
+ gensim
11
+ scikit-learn
12
+
13
+ # Or a specific version
14
+ # marimo>=0.9.0
15
+
16
+ # Add other dependencies as needed