bintangyosua commited on
Commit
214f893
·
verified ·
1 Parent(s): 7fb202f

Upload 25 files

Browse files
app.py CHANGED
@@ -31,9 +31,12 @@ def __(form, mo, try_predict):
31
 
32
  @app.cell(hide_code=True)
33
  def __():
 
 
34
  import marimo as mo
35
  import pandas as pd
36
  import numpy as np
 
37
 
38
  import matplotlib.pyplot as plt
39
  import seaborn as sns
@@ -60,6 +63,8 @@ def __():
60
  from tensorflow.keras.preprocessing.sequence import pad_sequences
61
  from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
62
  from sklearn.model_selection import train_test_split
 
 
63
 
64
  import nltk
65
 
@@ -84,13 +89,18 @@ def __():
84
  Word2Vec,
85
  WordCloud,
86
  WordNetLemmatizer,
 
87
  alt,
 
 
88
  mo,
89
  nltk,
90
  np,
 
91
  pad_sequences,
92
  pd,
93
  plt,
 
94
  re,
95
  sns,
96
  stopwords,
@@ -162,7 +172,7 @@ def __():
162
  return issue_type_mapping, label_mapping
163
 
164
 
165
- @app.cell
166
  def __(issue_type_mapping, label_mapping):
167
  label_mapping_reversed = {v: k for k, v in label_mapping.items()}
168
  issue_type_mapping_reversed = {v: k for k, v in issue_type_mapping.items()}
@@ -193,7 +203,7 @@ def __(df, issue_type_mapping_reversed, label_mapping_reversed, mo):
193
  return issue_types_grouped, labels_grouped
194
 
195
 
196
- @app.cell
197
  def __(df):
198
  df.iloc[:, :6].head(7)
199
  return
@@ -336,8 +346,8 @@ def __(np):
336
  @app.cell(hide_code=True)
337
  def __(FastText, Word2Vec, processed_statement):
338
  embedding_models = {
339
- 'fasttext': FastText(sentences=processed_statement, vector_size=100, window=3, min_count=1, seed=0),
340
- 'word2vec': Word2Vec(sentences=processed_statement, vector_size=100, window=3, min_count=1, seed=0)
341
  }
342
  return (embedding_models,)
343
 
@@ -444,8 +454,8 @@ def __(fasttext_plot, mo):
444
 
445
 
446
  @app.cell(hide_code=True)
447
- def __(fasttext_plot, mo, word2vec_plot):
448
- word2vec_table = fasttext_plot.value[['statement', 'label_text', 'issue_type_text']]
449
  word2vec_chart = mo.vstack([
450
  word2vec_plot,
451
  word2vec_table
@@ -532,6 +542,11 @@ def __():
532
 
533
  @app.cell(hide_code=True)
534
  def __():
 
 
 
 
 
535
  # clf_model = Sequential()
536
  # clf_model.add(Bidirectional(tf.keras.layers.GRU(64,
537
  # activation='relu',
@@ -558,18 +573,18 @@ def __():
558
 
559
  @app.cell(hide_code=True)
560
  def __():
561
- # clf_model.save('models/model_8781.keras')
562
- # joblib.dump(model_history, 'history/history_model_8781.pkl')
563
  return
564
 
565
 
566
  @app.cell(hide_code=True)
567
- def __(joblib, tf):
568
- loaded_model = tf.keras.models.load_model('models/model_8781.keras')
569
- model_history_loaded = joblib.load('history/history_model_8781.pkl')
570
 
571
- # loaded_model = clf_model
572
- # model_history_loaded = model_history
573
  return loaded_model, model_history_loaded
574
 
575
 
@@ -620,13 +635,6 @@ def __(X_test, loaded_model, np):
620
  return (y_pred,)
621
 
622
 
623
- @app.cell(hide_code=True)
624
- def __():
625
- from sklearn.metrics import accuracy_score, classification_report
626
- import joblib
627
- return accuracy_score, classification_report, joblib
628
-
629
-
630
  @app.cell(hide_code=True)
631
  def __(accuracy_score, mo, y_pred, y_test):
632
  mo.md(f"Accuracy score: **{round(accuracy_score(y_test, y_pred) * 100, 2)}**%")
 
31
 
32
  @app.cell(hide_code=True)
33
  def __():
34
+ import os
35
+
36
  import marimo as mo
37
  import pandas as pd
38
  import numpy as np
39
+ import random
40
 
41
  import matplotlib.pyplot as plt
42
  import seaborn as sns
 
63
  from tensorflow.keras.preprocessing.sequence import pad_sequences
64
  from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
65
  from sklearn.model_selection import train_test_split
66
+ from sklearn.metrics import accuracy_score, classification_report
67
+ import joblib
68
 
69
  import nltk
70
 
 
89
  Word2Vec,
90
  WordCloud,
91
  WordNetLemmatizer,
92
+ accuracy_score,
93
  alt,
94
+ classification_report,
95
+ joblib,
96
  mo,
97
  nltk,
98
  np,
99
+ os,
100
  pad_sequences,
101
  pd,
102
  plt,
103
+ random,
104
  re,
105
  sns,
106
  stopwords,
 
172
  return issue_type_mapping, label_mapping
173
 
174
 
175
+ @app.cell(hide_code=True)
176
  def __(issue_type_mapping, label_mapping):
177
  label_mapping_reversed = {v: k for k, v in label_mapping.items()}
178
  issue_type_mapping_reversed = {v: k for k, v in issue_type_mapping.items()}
 
203
  return issue_types_grouped, labels_grouped
204
 
205
 
206
+ @app.cell(hide_code=True)
207
  def __(df):
208
  df.iloc[:, :6].head(7)
209
  return
 
346
  @app.cell(hide_code=True)
347
  def __(FastText, Word2Vec, processed_statement):
348
  embedding_models = {
349
+ 'fasttext': FastText(sentences=processed_statement, vector_size=100, window=3, min_count=1, seed=0, workers=1),
350
+ 'word2vec': Word2Vec(sentences=processed_statement, vector_size=100, window=3, min_count=1, seed=0, workers=1)
351
  }
352
  return (embedding_models,)
353
 
 
454
 
455
 
456
  @app.cell(hide_code=True)
457
+ def __(mo, word2vec_plot):
458
+ word2vec_table = word2vec_plot.value[['statement', 'label_text', 'issue_type_text']]
459
  word2vec_chart = mo.vstack([
460
  word2vec_plot,
461
  word2vec_table
 
542
 
543
  @app.cell(hide_code=True)
544
  def __():
545
+ # seed_value = 345
546
+ # np.random.seed(seed_value)
547
+ # random.seed(seed_value)
548
+ # tf.random.set_seed(seed_value)
549
+
550
  # clf_model = Sequential()
551
  # clf_model.add(Bidirectional(tf.keras.layers.GRU(64,
552
  # activation='relu',
 
573
 
574
  @app.cell(hide_code=True)
575
  def __():
576
+ # clf_model.save('models/model_8719.keras')
577
+ # joblib.dump(model_history, 'history/history_model_8719.pkl')
578
  return
579
 
580
 
581
  @app.cell(hide_code=True)
582
+ def __(clf_model, model_history):
583
+ # loaded_model = tf.keras.models.load_model('models/model_8781.keras')
584
+ # model_history_loaded = joblib.load('history/history_model_8781.pkl')
585
 
586
+ loaded_model = clf_model
587
+ model_history_loaded = model_history
588
  return loaded_model, model_history_loaded
589
 
590
 
 
635
  return (y_pred,)
636
 
637
 
 
 
 
 
 
 
 
638
  @app.cell(hide_code=True)
639
  def __(accuracy_score, mo, y_pred, y_test):
640
  mo.md(f"Accuracy score: **{round(accuracy_score(y_test, y_pred) * 100, 2)}**%")
history/history_model_8719.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d3daad10fd31b82222443095e07d377da35c03b5bbd91bf83555c2f9d1a775b
3
+ size 804041
history/history_model_8781.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bcedb7cbde492115908c5e331f3359e56609c81f68bcff8b65246683f591bf75
3
- size 804042
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9e877861152f54a2c5a1372a3d00c53d50e4ea24153ccc0d366a7fee3af6a79
3
+ size 804041
history/history_model_8812.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a12c4820211896df8afa2345f2f122fec1dfd8b86f309f59634623ee0d69f546
3
+ size 804027
models/model_8719.keras ADDED
Binary file (799 kB). View file
 
models/model_8781.keras CHANGED
Binary files a/models/model_8781.keras and b/models/model_8781.keras differ
 
models/model_8812.keras ADDED
Binary file (799 kB). View file
 
requirements.txt CHANGED
@@ -1,22 +1,22 @@
1
- marimo==0.9.15
2
- pandas==1.5.3
3
- numpy==1.24.2
4
- scipy==1.10.1
5
- pyarrow==16.1.0
6
-
7
- matplotlib==3.7.1
8
- seaborn==0.12.2
9
- altair==5.3.0
10
-
11
- umap-learn==0.5.7
12
-
13
- gensim==4.3.3
14
- scikit-learn>=0.22
15
- tensorflow==2.16.1
16
- wordcloud==1.9.3
17
- nltk==3.8.1
18
-
19
- # Or a specific version
20
- # marimo>=0.9.0
21
-
22
- # Add other dependencies as needed
 
1
+ marimo==0.9.15
2
+ pandas==1.5.3
3
+ numpy==1.24.2
4
+ scipy==1.10.1
5
+ pyarrow==16.1.0
6
+
7
+ matplotlib==3.7.1
8
+ seaborn==0.12.2
9
+ altair==5.3.0
10
+
11
+ umap-learn==0.5.7
12
+
13
+ gensim==4.3.3
14
+ scikit-learn>=0.22
15
+ tensorflow==2.16.1
16
+ wordcloud==1.9.3
17
+ nltk==3.8.1
18
+
19
+ # Or a specific version
20
+ # marimo>=0.9.0
21
+
22
+ # Add other dependencies as needed