Spaces:
Runtime error
Runtime error
jwkirchenbauer
commited on
Commit
·
0e6d24f
1
Parent(s):
4343565
features mostly in place
Browse files- app.py +2 -0
- demo_watermark.py +82 -59
app.py
CHANGED
@@ -21,6 +21,7 @@ arg_dict = {
|
|
21 |
'run_gradio': True,
|
22 |
'demo_public': False,
|
23 |
'model_name_or_path': 'facebook/opt-125m',
|
|
|
24 |
'prompt_max_length': None,
|
25 |
'max_new_tokens': 200,
|
26 |
'generation_seed': 123,
|
@@ -36,6 +37,7 @@ arg_dict = {
|
|
36 |
'detection_z_threshold': 4.0,
|
37 |
'select_green_tokens': True,
|
38 |
'skip_model_load': False,
|
|
|
39 |
}
|
40 |
|
41 |
args.__dict__.update(arg_dict)
|
|
|
21 |
'run_gradio': True,
|
22 |
'demo_public': False,
|
23 |
'model_name_or_path': 'facebook/opt-125m',
|
24 |
+
# 'model_name_or_path': 'facebook/opt-2.7b',
|
25 |
'prompt_max_length': None,
|
26 |
'max_new_tokens': 200,
|
27 |
'generation_seed': 123,
|
|
|
37 |
'detection_z_threshold': 4.0,
|
38 |
'select_green_tokens': True,
|
39 |
'skip_model_load': False,
|
40 |
+
'seed_separately': True,
|
41 |
}
|
42 |
|
43 |
args.__dict__.update(arg_dict)
|
demo_watermark.py
CHANGED
@@ -223,7 +223,10 @@ def generate(prompt, args, model=None, device=None, tokenizer=None):
|
|
223 |
|
224 |
torch.manual_seed(args.generation_seed)
|
225 |
output_without_watermark = generate_without_watermark(**tokd_input)
|
226 |
-
|
|
|
|
|
|
|
227 |
output_with_watermark = generate_with_watermark(**tokd_input)
|
228 |
|
229 |
if args.is_decoder_only_model:
|
@@ -275,7 +278,52 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
275 |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
276 |
<p/>
|
277 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
# Parameter selection group
|
280 |
with gr.Accordion("Advanced Settings",open=False):
|
281 |
with gr.Row():
|
@@ -302,11 +350,29 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
302 |
ignore_repeated_bigrams = gr.Checkbox(label="Ignore Bigram Repeats")
|
303 |
with gr.Row():
|
304 |
normalizers = gr.CheckboxGroup(label="Normalizations", choices=["unicode", "homoglyphs", "truecase"], value=args.normalizers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
|
|
310 |
def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
|
311 |
def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
|
312 |
def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
|
@@ -331,76 +397,33 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
331 |
def update_max_new_tokens(session_state, value): session_state.max_new_tokens = int(value); return session_state
|
332 |
def update_ignore_repeated_bigrams(session_state, value): session_state.ignore_repeated_bigrams = value; return session_state
|
333 |
def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
|
|
|
|
|
334 |
|
335 |
-
decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
|
336 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
|
337 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
|
338 |
decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
|
339 |
-
|
|
|
340 |
sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
|
341 |
generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
|
342 |
n_beams.change(update_n_beams,inputs=[session_args, n_beams], outputs=[session_args])
|
343 |
max_new_tokens.change(update_max_new_tokens,inputs=[session_args, max_new_tokens], outputs=[session_args])
|
344 |
-
|
345 |
gamma.change(update_gamma,inputs=[session_args, gamma], outputs=[session_args])
|
346 |
delta.change(update_delta,inputs=[session_args, delta], outputs=[session_args])
|
347 |
ignore_repeated_bigrams.change(update_ignore_repeated_bigrams,inputs=[session_args, ignore_repeated_bigrams], outputs=[session_args])
|
348 |
normalizers.change(update_normalizers,inputs=[session_args, normalizers], outputs=[session_args])
|
|
|
|
|
349 |
|
350 |
-
|
351 |
-
|
352 |
-
with gr.Row():
|
353 |
-
prompt = gr.Textbox(label=f"Prompt", interactive=True)
|
354 |
-
with gr.Row():
|
355 |
-
generate_btn = gr.Button("Generate")
|
356 |
-
with gr.Row():
|
357 |
-
with gr.Column(scale=2):
|
358 |
-
output_without_watermark = gr.Textbox(label="Output Without Watermark", interactive=False)
|
359 |
-
with gr.Column(scale=1):
|
360 |
-
without_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False)
|
361 |
-
with gr.Row():
|
362 |
-
with gr.Column(scale=2):
|
363 |
-
output_with_watermark = gr.Textbox(label="Output With Watermark", interactive=False)
|
364 |
-
with gr.Column(scale=1):
|
365 |
-
with_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False)
|
366 |
-
|
367 |
-
|
368 |
-
redecoded_input = gr.Textbox(visible=False)
|
369 |
-
truncation_warning = gr.Number(visible=False)
|
370 |
-
def truncate_prompt(redecoded_input, truncation_warning, orig_prompt, args):
|
371 |
-
if truncation_warning:
|
372 |
-
return redecoded_input + f"\n\n[Prompt was truncated before generation due to length...]", args
|
373 |
-
else:
|
374 |
-
return orig_prompt, args
|
375 |
-
|
376 |
-
generate_btn.click(fn=generate_partial, inputs=[prompt,session_args], outputs=[redecoded_input, truncation_warning, output_without_watermark, output_with_watermark,session_args])
|
377 |
-
|
378 |
-
# Show truncated version of prompt if truncation occurred
|
379 |
-
redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
|
380 |
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
|
385 |
-
|
386 |
-
with gr.Row():
|
387 |
-
detection_input = gr.Textbox(label="Text to Analyze", interactive=True)
|
388 |
-
with gr.Row():
|
389 |
-
detect_btn = gr.Button("Detect")
|
390 |
-
with gr.Row():
|
391 |
-
detection_result = gr.Textbox(label="Detection Result", interactive=False)
|
392 |
-
detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result, session_args])
|
393 |
-
|
394 |
-
with gr.Accordion("A note on model capability",open=False):
|
395 |
-
gr.Markdown(
|
396 |
-
"""
|
397 |
-
The models that can be used in this demo are limited to those that are open source as well as fit on a single commodity GPU. In particular, there are few models above 10B parameters and way fewer trained using both Instruction finetuning or RLHF that are open source that we can use.
|
398 |
-
|
399 |
-
Therefore, the model, in both it's un-watermarked (normal) and watermarked state, is not generally able to respond well to the kinds of prompts that a 100B+ Instruction and RLHF tuned model such as ChatGPT, Claude, or Bard is.
|
400 |
-
|
401 |
-
We suggest you try prompts that give the model a few sentences and then allow it to 'continue' the prompt, as these weaker models are more capable in this simpler language modeling setting.
|
402 |
-
"""
|
403 |
-
)
|
404 |
|
405 |
if args.demo_public:
|
406 |
demo.launch(share=True) # exposes app to the internet via randomly generated link
|
|
|
223 |
|
224 |
torch.manual_seed(args.generation_seed)
|
225 |
output_without_watermark = generate_without_watermark(**tokd_input)
|
226 |
+
|
227 |
+
# optional to seed before second generation, but will not be the same again generally, unless delta==0.0, no-op watermark
|
228 |
+
if args.seed_separately:
|
229 |
+
torch.manual_seed(args.generation_seed)
|
230 |
output_with_watermark = generate_with_watermark(**tokd_input)
|
231 |
|
232 |
if args.is_decoder_only_model:
|
|
|
278 |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
279 |
<p/>
|
280 |
""")
|
281 |
+
# Construct state for parameters, define updates and toggles, and register event listeners
|
282 |
+
session_args = gr.State(value=args)
|
283 |
+
|
284 |
+
with gr.Tab("Generation"):
|
285 |
+
|
286 |
+
with gr.Row():
|
287 |
+
prompt = gr.Textbox(label=f"Prompt", interactive=True)
|
288 |
+
with gr.Row():
|
289 |
+
generate_btn = gr.Button("Generate")
|
290 |
+
with gr.Row():
|
291 |
+
with gr.Column(scale=2):
|
292 |
+
output_without_watermark = gr.Textbox(label="Output Without Watermark", interactive=False)
|
293 |
+
with gr.Column(scale=1):
|
294 |
+
without_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False)
|
295 |
+
with gr.Row():
|
296 |
+
with gr.Column(scale=2):
|
297 |
+
output_with_watermark = gr.Textbox(label="Output With Watermark", interactive=False)
|
298 |
+
with gr.Column(scale=1):
|
299 |
+
with_watermark_detection_result = gr.Textbox(label="Detection Result", interactive=False)
|
300 |
+
|
301 |
+
redecoded_input = gr.Textbox(visible=False)
|
302 |
+
truncation_warning = gr.Number(visible=False)
|
303 |
+
def truncate_prompt(redecoded_input, truncation_warning, orig_prompt, args):
|
304 |
+
if truncation_warning:
|
305 |
+
return redecoded_input + f"\n\n[Prompt was truncated before generation due to length...]", args
|
306 |
+
else:
|
307 |
+
return orig_prompt, args
|
308 |
+
|
309 |
+
generate_btn.click(fn=generate_partial, inputs=[prompt,session_args], outputs=[redecoded_input, truncation_warning, output_without_watermark, output_with_watermark,session_args])
|
310 |
+
|
311 |
+
# Show truncated version of prompt if truncation occurred
|
312 |
+
redecoded_input.change(fn=truncate_prompt, inputs=[redecoded_input,truncation_warning,prompt,session_args], outputs=[prompt,session_args])
|
313 |
+
|
314 |
+
# Call detection when the outputs of the generate function are updated.
|
315 |
+
output_without_watermark.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
316 |
+
output_with_watermark.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
317 |
|
318 |
+
with gr.Tab("Detector Only"):
|
319 |
+
with gr.Row():
|
320 |
+
detection_input = gr.Textbox(label="Text to Analyze", interactive=True)
|
321 |
+
with gr.Row():
|
322 |
+
detect_btn = gr.Button("Detect")
|
323 |
+
with gr.Row():
|
324 |
+
detection_result = gr.Textbox(label="Detection Result", interactive=False)
|
325 |
+
detect_btn.click(fn=detect_partial, inputs=[detection_input,session_args], outputs=[detection_result, session_args])
|
326 |
+
|
327 |
# Parameter selection group
|
328 |
with gr.Accordion("Advanced Settings",open=False):
|
329 |
with gr.Row():
|
|
|
350 |
ignore_repeated_bigrams = gr.Checkbox(label="Ignore Bigram Repeats")
|
351 |
with gr.Row():
|
352 |
normalizers = gr.CheckboxGroup(label="Normalizations", choices=["unicode", "homoglyphs", "truecase"], value=args.normalizers)
|
353 |
+
gr.Markdown(f"_Note: sliders don't always update perfectly. Clicking on the bar or using the number window to the right can help._")
|
354 |
+
with gr.Accordion("Actual submitted parameters:",open=False):
|
355 |
+
current_parameters = gr.Textbox(label="submitted parameters", value=args)
|
356 |
+
with gr.Accordion("Legacy Settings",open=False):
|
357 |
+
with gr.Row():
|
358 |
+
with gr.Column(scale=1):
|
359 |
+
seed_separately = gr.Checkbox(label="Seed both generations separately", value=args.seed_separately)
|
360 |
+
with gr.Column(scale=1):
|
361 |
+
select_green_tokens = gr.Checkbox(label="Select 'greenlist' from partition", value=args.select_green_tokens)
|
362 |
+
|
363 |
|
364 |
+
with gr.Accordion("A note on model capability",open=False):
|
365 |
+
gr.Markdown(
|
366 |
+
"""
|
367 |
+
The models that can be used in this demo are limited to those that are open source as well as fit on a single commodity GPU. In particular, there are few models above 10B parameters and way fewer trained using both Instruction finetuning or RLHF that are open source that we can use.
|
368 |
+
|
369 |
+
Therefore, the model, in both it's un-watermarked (normal) and watermarked state, is not generally able to respond well to the kinds of prompts that a 100B+ Instruction and RLHF tuned model such as ChatGPT, Claude, or Bard is.
|
370 |
+
|
371 |
+
We suggest you try prompts that give the model a few sentences and then allow it to 'continue' the prompt, as these weaker models are more capable in this simpler language modeling setting.
|
372 |
+
"""
|
373 |
+
)
|
374 |
|
375 |
+
# State manager logic
|
376 |
def update_sampling_temp(session_state, value): session_state.sampling_temp = float(value); return session_state
|
377 |
def update_generation_seed(session_state, value): session_state.generation_seed = int(value); return session_state
|
378 |
def update_gamma(session_state, value): session_state.gamma = float(value); return session_state
|
|
|
397 |
def update_max_new_tokens(session_state, value): session_state.max_new_tokens = int(value); return session_state
|
398 |
def update_ignore_repeated_bigrams(session_state, value): session_state.ignore_repeated_bigrams = value; return session_state
|
399 |
def update_normalizers(session_state, value): session_state.normalizers = value; return session_state
|
400 |
+
def update_seed_separately(session_state, value): session_state.seed_separately = value; return session_state
|
401 |
+
def update_select_green_tokens(session_state, value): session_state.select_green_tokens = value; return session_state
|
402 |
|
|
|
403 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[sampling_temp])
|
404 |
decoding.change(toggle_sampling_vis,inputs=[decoding], outputs=[generation_seed])
|
405 |
decoding.change(toggle_sampling_vis_inv,inputs=[decoding], outputs=[n_beams])
|
406 |
+
|
407 |
+
decoding.change(update_decoding,inputs=[session_args, decoding], outputs=[session_args])
|
408 |
sampling_temp.change(update_sampling_temp,inputs=[session_args, sampling_temp], outputs=[session_args])
|
409 |
generation_seed.change(update_generation_seed,inputs=[session_args, generation_seed], outputs=[session_args])
|
410 |
n_beams.change(update_n_beams,inputs=[session_args, n_beams], outputs=[session_args])
|
411 |
max_new_tokens.change(update_max_new_tokens,inputs=[session_args, max_new_tokens], outputs=[session_args])
|
|
|
412 |
gamma.change(update_gamma,inputs=[session_args, gamma], outputs=[session_args])
|
413 |
delta.change(update_delta,inputs=[session_args, delta], outputs=[session_args])
|
414 |
ignore_repeated_bigrams.change(update_ignore_repeated_bigrams,inputs=[session_args, ignore_repeated_bigrams], outputs=[session_args])
|
415 |
normalizers.change(update_normalizers,inputs=[session_args, normalizers], outputs=[session_args])
|
416 |
+
seed_separately.change(update_seed_separately,inputs=[session_args, seed_separately], outputs=[session_args])
|
417 |
+
select_green_tokens.change(update_select_green_tokens,inputs=[session_args, select_green_tokens], outputs=[session_args])
|
418 |
|
419 |
+
generate_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
420 |
+
detect_btn.click(lambda value: str(value), inputs=[session_args], outputs=[current_parameters])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
+
# When the parameters change, also fire detection, since some detection params dont change the model output.
|
423 |
+
current_parameters.change(fn=detect_partial, inputs=[output_without_watermark,session_args], outputs=[without_watermark_detection_result,session_args])
|
424 |
+
current_parameters.change(fn=detect_partial, inputs=[output_with_watermark,session_args], outputs=[with_watermark_detection_result,session_args])
|
425 |
|
426 |
+
demo.queue(concurrency_count=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
if args.demo_public:
|
429 |
demo.launch(share=True) # exposes app to the internet via randomly generated link
|