hyunda commited on
Commit
b7397b6
·
1 Parent(s): 56b1f58
Files changed (3) hide show
  1. app.py +242 -0
  2. labels.txt +0 -0
  3. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nvidia/segformer-b5-finetuned-ade-640-640"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "nvidia/segformer-b5-finetuned-ade-640-640"
15
+ )
16
+
17
+ def ade_palette():
18
+ """ADE20K palette that maps each class to RGB values."""
19
+ return [
20
+ [204, 87, 92],
21
+ [112, 185, 212],
22
+ [45, 189, 106],
23
+ [234, 123, 67],
24
+ [78, 56, 123],
25
+ [210, 32, 89],
26
+ [90, 180, 56],
27
+ [155, 102, 200],
28
+ [33, 147, 176],
29
+ [255, 183, 76],
30
+ [67, 123, 89],
31
+ [190, 60, 45],
32
+ [134, 112, 200],
33
+ [56, 45, 189],
34
+ [200, 56, 123],
35
+ [87, 92, 204],
36
+ [120, 56, 123],
37
+ [45, 78, 123],
38
+ [156, 200, 56],
39
+ [32, 90, 210],
40
+ [56, 123, 67],
41
+ [180, 56, 123],
42
+ [123, 67, 45],
43
+ [45, 134, 200],
44
+ [67, 56, 123],
45
+ [78, 123, 67],
46
+ [32, 210, 90],
47
+ [45, 56, 189],
48
+ [123, 56, 123],
49
+ [56, 156, 200],
50
+ [189, 56, 45],
51
+ [112, 200, 56],
52
+ [56, 123, 45],
53
+ [200, 32, 90],
54
+ [123, 45, 78],
55
+ [200, 156, 56],
56
+ [45, 67, 123],
57
+ [56, 45, 78],
58
+ [45, 56, 123],
59
+ [123, 67, 56],
60
+ [56, 78, 123],
61
+ [210, 90, 32],
62
+ [123, 56, 189],
63
+ [45, 200, 134],
64
+ [67, 123, 56],
65
+ [123, 45, 67],
66
+ [90, 32, 210],
67
+ [200, 45, 78],
68
+ [32, 210, 90],
69
+ [45, 123, 67],
70
+ [165, 42, 87],
71
+ [72, 145, 167],
72
+ [15, 158, 75],
73
+ [209, 89, 40],
74
+ [32, 21, 121],
75
+ [184, 20, 100],
76
+ [56, 135, 15],
77
+ [128, 92, 176],
78
+ [1, 119, 140],
79
+ [220, 151, 43],
80
+ [41, 97, 72],
81
+ [148, 38, 27],
82
+ [107, 86, 176],
83
+ [21, 26, 136],
84
+ [174, 27, 90],
85
+ [91, 96, 204],
86
+ [108, 50, 107],
87
+ [27, 45, 136],
88
+ [168, 200, 52],
89
+ [7, 102, 27],
90
+ [42, 93, 56],
91
+ [140, 52, 112],
92
+ [92, 107, 168],
93
+ [17, 118, 176],
94
+ [59, 50, 174],
95
+ [206, 40, 143],
96
+ [44, 19, 142],
97
+ [23, 168, 75],
98
+ [54, 57, 189],
99
+ [144, 21, 15],
100
+ [15, 176, 35],
101
+ [107, 19, 79],
102
+ [204, 52, 114],
103
+ [48, 173, 83],
104
+ [11, 120, 53],
105
+ [206, 104, 28],
106
+ [20, 31, 153],
107
+ [27, 21, 93],
108
+ [11, 206, 138],
109
+ [112, 30, 83],
110
+ [68, 91, 152],
111
+ [153, 13, 43],
112
+ [25, 114, 54],
113
+ [92, 27, 150],
114
+ [108, 42, 59],
115
+ [194, 77, 5],
116
+ [145, 48, 83],
117
+ [7, 113, 19],
118
+ [25, 92, 113],
119
+ [60, 168, 79],
120
+ [78, 33, 120],
121
+ [89, 176, 205],
122
+ [27, 200, 94],
123
+ [210, 67, 23],
124
+ [123, 89, 189],
125
+ [225, 56, 112],
126
+ [75, 156, 45],
127
+ [172, 104, 200],
128
+ [15, 170, 197],
129
+ [240, 133, 65],
130
+ [89, 156, 112],
131
+ [214, 88, 57],
132
+ [156, 134, 200],
133
+ [78, 57, 189],
134
+ [200, 78, 123],
135
+ [106, 120, 210],
136
+ [145, 56, 112],
137
+ [89, 120, 189],
138
+ [185, 206, 56],
139
+ [47, 99, 28],
140
+ [112, 189, 78],
141
+ [200, 112, 89],
142
+ [89, 145, 112],
143
+ [78, 106, 189],
144
+ [112, 78, 189],
145
+ [156, 112, 78],
146
+ [28, 210, 99],
147
+ [78, 89, 189],
148
+ [189, 78, 57],
149
+ [112, 200, 78],
150
+ [189, 47, 78],
151
+ [205, 112, 57],
152
+ [78, 145, 57],
153
+ [200, 78, 112],
154
+ [99, 89, 145],
155
+ [200, 156, 78],
156
+ [57, 78, 145],
157
+ [78, 57, 99],
158
+ [57, 78, 145],
159
+ [145, 112, 78],
160
+ [78, 89, 145],
161
+ [210, 99, 28],
162
+ [145, 78, 189],
163
+ [57, 200, 136],
164
+ [89, 156, 78],
165
+ [145, 78, 99],
166
+ [99, 28, 210],
167
+ [189, 78, 47],
168
+ [28, 210, 99],
169
+ [78, 145, 57],
170
+ ]
171
+
172
+ labels_list = []
173
+
174
+ with open(r'labels.txt', 'r') as fp:
175
+ for line in fp:
176
+ labels_list.append(line[:-1])
177
+
178
+ colormap = np.asarray(ade_palette())
179
+
180
+ def label_to_color_image(label):
181
+ if label.ndim != 2:
182
+ raise ValueError("Expect 2-D input label")
183
+
184
+ if np.max(label) >= len(colormap):
185
+ raise ValueError("label value too large.")
186
+ return colormap[label]
187
+
188
+ def draw_plot(pred_img, seg):
189
+ fig = plt.figure(figsize=(20, 15))
190
+
191
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
192
+
193
+ plt.subplot(grid_spec[0])
194
+ plt.imshow(pred_img)
195
+ plt.axis('off')
196
+ LABEL_NAMES = np.asarray(labels_list)
197
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
198
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
199
+
200
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
201
+ ax = plt.subplot(grid_spec[1])
202
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
203
+ ax.yaxis.tick_right()
204
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
205
+ plt.xticks([], [])
206
+ ax.tick_params(width=0.0, labelsize=25)
207
+ return fig
208
+
209
+ def sepia(input_img):
210
+ input_img = Image.fromarray(input_img)
211
+
212
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
213
+ outputs = model(**inputs)
214
+ logits = outputs.logits
215
+
216
+ logits = tf.transpose(logits, [0, 2, 3, 1])
217
+ logits = tf.image.resize(
218
+ logits, input_img.size[::-1]
219
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
220
+ seg = tf.math.argmax(logits, axis=-1)[0]
221
+
222
+ color_seg = np.zeros(
223
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
224
+ ) # height, width, 3
225
+ for label, color in enumerate(colormap):
226
+ color_seg[seg.numpy() == label, :] = color
227
+
228
+ # Show image + mask
229
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
230
+ pred_img = pred_img.astype(np.uint8)
231
+
232
+ fig = draw_plot(pred_img, seg)
233
+ return fig
234
+
235
+ demo = gr.Interface(fn=sepia,
236
+ inputs=gr.Image(shape=(400, 600)),
237
+ outputs=['plot'],
238
+ examples=["ADE_val_00000001.jpeg", "ADE_val_00001159.jpg", "ADE_val_00001248.jpg", "ADE_val_00001472.jpg"],
239
+ allow_flagging='never')
240
+
241
+
242
+ demo.launch()
labels.txt ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ tensorflow
4
+ numpy
5
+ Image
6
+ matplotlib