import pandas as pd import numpy as np import json from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import load_model import streamlit as st with open("tokenizer_cnnlstm.json", 'r') as tokenizer_file: word_index = json.load(tokenizer_file) tokenizer = Tokenizer(num_words=100000) tokenizer.word_index = word_index model = load_model("model2.h5") classes = ['ADHD', 'OCD', 'Aspergers', 'Depression', 'PTSD'] st.markdown("## Mental Health Prediction 😌 - **Beta**") st.divider() text = st.text_area("Enter transcript:", height=200) if st.button("Predict"): sequence = tokenizer.texts_to_sequences([text]) sequence = pad_sequences(sequence, maxlen=100) prediction = model.predict(sequence) predicted_class = classes[np.argmax(prediction)] st.write("**👉 I think you're talking about:**", predicted_class) prediction_flat = prediction.flatten() data = pd.DataFrame({ 'Category': classes, 'Values': prediction_flat}) st.bar_chart(data.set_index('Category')) st.divider() st.markdown("### 🛑 Please give a context length of atleast 100 words for the best results") st.markdown("## Disclaimer:") st.markdown("""This model is not a substitute for professional medical advice. The predictions made by this model are based on a sample dataset and may not be accurate for all individuals. If you are concerned about your mental health, please consult witha qualified healthcare professional.""")