File size: 29,731 Bytes
bd2d698 7a7f67a b298106 17dce22 7a7f67a 17dce22 7a7f67a b298106 7a7f67a b298106 7a7f67a dba3ac5 7a7f67a 2e84cf2 7a7f67a 1bb4e03 2e84cf2 7a7f67a 2e84cf2 7a7f67a dba3ac5 bb1048a dba3ac5 bb1048a dba3ac5 bb1048a dba3ac5 7a7f67a faf6544 7a7f67a 2e84cf2 faf6544 7a7f67a faf6544 7a7f67a 2e84cf2 faf6544 7a7f67a 2e84cf2 7a7f67a 4021735 faf6544 7a7f67a 2e84cf2 7a7f67a 4021735 7a7f67a 2e84cf2 7a7f67a faf6544 2e84cf2 faf6544 2e84cf2 faf6544 7a7f67a 2e84cf2 7a7f67a 2e84cf2 7a7f67a ae7a86d faf6544 2e84cf2 faf6544 2e84cf2 7a7f67a 2e84cf2 7a7f67a faf6544 7a7f67a 2e84cf2 faf6544 7a7f67a 2e84cf2 faf6544 7a7f67a 2e84cf2 faf6544 7a7f67a 2e84cf2 6121aa7 7a7f67a b298106 7a7f67a b298106 7a7f67a 14a3287 7a7f67a b298106 faf6544 c3c5af3 faf6544 2e84cf2 faf6544 7a7f67a 2e84cf2 7a7f67a faf6544 7a7f67a 777def4 dba3ac5 bb1048a dba3ac5 a87d51f 3a99615 dba3ac5 497f0f1 bb1048a dba3ac5 bb1048a dba3ac5 3a99615 d693904 3a99615 d693904 3a99615 dba3ac5 bb1048a dba3ac5 777def4 180a1c8 777def4 180a1c8 777def4 180a1c8 777def4 180a1c8 777def4 180a1c8 777def4 180a1c8 777def4 180a1c8 0405e84 180a1c8 c8870ae b736753 7a7f67a 2e84cf2 faf6544 7a7f67a e92dfe1 7a7f67a bd2d698 8a21a5f 7a7f67a 8a21a5f 7a7f67a eb84112 bc455c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import os
import logging
import time
import datetime
import gradio as gr
from threading import Thread, Lock
import datasets
from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
lock = Lock()
# Start ephemeral Spaces on PRs (see config in README.md)
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
# INTRODUCTION_TEXT,
TITLE,
ABOUT_TEXT,
SUBMISSION_TEXT_3,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
fields,
EvalQueueColumn
)
from src.envs import (
API,
EVAL_REQUESTS_PATH,
RESULT_REPO,
DATA_VERSION,
DATA_REPO,
HARD_RESULT_REPO,
# ELO_REPO, # Comment out
# HARD_ELO_REPO, # Comment out
SOLVE_REPO,
HARD_SOLVE_REPO,
HF_TOKEN,
QUEUE_REPO,
REPO_ID,
VOTES_REPO,
VOTES_PATH,
HF_HOME,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.execute import generate_command, default_command, stream_logs, find_result_file
from src.tools.plots import plot_solve_rate
# from src.voting.vote_system import VoteManager, run_scheduler
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Start ephemeral Spaces on PRs (see config in README.md)
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
NEW_DATA_ON_LEADERBOARD = True
LEADERBOARD_DF = None
HARD_LEADERBOARD_DF = None
# ELO_TASK_DF = None # Comment out
# ELO_BENCH_DF = None # Comment out
# HARD_ELO_TASK_DF = None # Comment out
# HARD_ELO_BENCH_DF = None # Comment out
COMPLETE_SOLVE_DF = None
INSTRUCT_SOLVE_DF = None
HARD_COMPLETE_SOLVE_DF = None
HARD_INSTRUCT_SOLVE_DF = None
DATA = datasets.load_dataset(DATA_REPO, "default", cache_dir=HF_HOME, split=DATA_VERSION,
verification_mode="no_checks")
def filter_data(data, keyword):
if not keyword:
return data
filtered_data = [item for item in data if keyword.lower() in item['complete_prompt'].lower()]
return filtered_data
def update_display(search_keyword, index, show_test):
filtered_data = filter_data(DATA, search_keyword)
if not filtered_data:
return ["No data available. Check the search criteria."] + [""] * 4 + [0, gr.update(maximum=0, value=0)]
max_index = len(filtered_data) - 1
index = min(max(0, index), max_index)
task_id = filtered_data[index]['task_id']
snippet1 = filtered_data[index]['complete_prompt']
snippet2 = filtered_data[index]['instruct_prompt']
# snippet3 = filtered_data[index]['canonical_solution'] if show_solution else ""
snippet4 = filtered_data[index]['test'] if show_test else ""
return [
task_id,
snippet1,
snippet2,
# snippet3,
snippet4,
len(filtered_data),
gr.update(maximum=max_index, value=index)
]
def restart_space():
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
def time_diff_wrapper(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
diff = end_time - start_time
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
return result
return wrapper
@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
"""Download dataset with exponential backoff retries."""
attempt = 0
while attempt < max_attempts:
try:
logging.info(f"Downloading {repo_id} to {local_dir}")
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type=repo_type,
tqdm_class=None,
etag_timeout=30,
max_workers=8,
)
logging.info("Download successful")
return
except Exception as e:
wait_time = backoff_factor**attempt
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
time.sleep(wait_time)
attempt += 1
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
def get_latest_data_leaderboard(
leaderboard_initial_df = None,
hard_leaderboard_initial_df = None,
# elo_task_df = None, # Comment out
# elo_bench_df = None, # Comment out
# hard_elo_task_df = None, # Comment out
# hard_elo_bench_df = None, # Comment out
complete_solve_df = None,
instruct_solve_df = None,
hard_complete_solve_df = None,
hard_instruct_solve_df = None
):
global NEW_DATA_ON_LEADERBOARD
global LEADERBOARD_DF
global HARD_LEADERBOARD_DF
# global ELO_TASK_DF # Comment out
# global ELO_BENCH_DF # Comment out
# global HARD_ELO_TASK_DF # Comment out
# global HARD_ELO_BENCH_DF # Comment out
global COMPLETE_SOLVE_DF
global INSTRUCT_SOLVE_DF
global HARD_COMPLETE_SOLVE_DF
global HARD_INSTRUCT_SOLVE_DF
if NEW_DATA_ON_LEADERBOARD:
print("Leaderboard updated at reload!")
leaderboard_dataset = datasets.load_dataset(
RESULT_REPO,
"default",
split="train",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
verification_mode="no_checks"
).filter(lambda x: x['complete'] is not None or x['instruct'] is not None)
LEADERBOARD_DF = get_leaderboard_df(
leaderboard_dataset=leaderboard_dataset,
cols=COLS,
)
hard_leaderboard_dataset = datasets.load_dataset(
HARD_RESULT_REPO,
"default",
split="train",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
verification_mode="no_checks"
).filter(lambda x: x['complete'] is not None or x['instruct'] is not None)
hard_leaderboard_df = get_leaderboard_df(
leaderboard_dataset=hard_leaderboard_dataset,
cols=COLS,
)
HARD_LEADERBOARD_DF = hard_leaderboard_df
# Comment out Elo dataset loading
# elo_task_df = datasets.load_dataset(...)
# elo_bench_df = datasets.load_dataset(...)
# ELO_TASK_DF = elo_task_df
# ELO_BENCH_DF = elo_bench_df
# hard_elo_task_df = datasets.load_dataset(...)
# hard_elo_bench_df = datasets.load_dataset(...)
# HARD_ELO_TASK_DF = hard_elo_task_df
# HARD_ELO_BENCH_DF = hard_elo_bench_df
complete_solve_df = datasets.load_dataset(
SOLVE_REPO,
"default",
split="complete",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
verification_mode="no_checks"
).to_pandas()
instruct_solve_df = datasets.load_dataset(
SOLVE_REPO,
"default",
split="instruct",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
verification_mode="no_checks"
).to_pandas()
COMPLETE_SOLVE_DF = complete_solve_df
INSTRUCT_SOLVE_DF = instruct_solve_df
hard_complete_solve_df = datasets.load_dataset(
HARD_SOLVE_REPO,
"default",
split="complete",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
verification_mode="no_checks"
).to_pandas()
hard_instruct_solve_df = datasets.load_dataset(
HARD_SOLVE_REPO,
"default",
split="instruct",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
verification_mode="no_checks"
).to_pandas()
HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df
HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df
NEW_DATA_ON_LEADERBOARD = False
else:
LEADERBOARD_DF = leaderboard_initial_df
HARD_LEADERBOARD_DF = hard_leaderboard_initial_df
# ELO_TASK_DF = elo_task_df # Comment out
# ELO_BENCH_DF = elo_bench_df # Comment out
# HARD_ELO_TASK_DF = hard_elo_task_df # Comment out
# HARD_ELO_BENCH_DF = hard_elo_bench_df # Comment out
COMPLETE_SOLVE_DF = complete_solve_df
INSTRUCT_SOLVE_DF = instruct_solve_df
HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df
HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df
return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)
def init_space():
"""Initializes the application space, loading only necessary data."""
# Always redownload the leaderboard DataFrame
global LEADERBOARD_DF
global HARD_LEADERBOARD_DF
# global ELO_TASK_DF # Comment out
# global ELO_BENCH_DF # Comment out
# global HARD_ELO_TASK_DF # Comment out
# global HARD_ELO_BENCH_DF # Comment out
global COMPLETE_SOLVE_DF
global INSTRUCT_SOLVE_DF
global HARD_COMPLETE_SOLVE_DF
global HARD_INSTRUCT_SOLVE_DF
LEADERBOARD_DF, HARD_LEADERBOARD_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = get_latest_data_leaderboard()
# HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = get_latest_data_leaderboard()
return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)
# return (HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)
# Initialize VoteManager
# vote_manager = VoteManager(VOTES_PATH, EVAL_REQUESTS_PATH, VOTES_REPO)
# Schedule the upload_votes method to run every 15 minutes
# schedule.every(15).minutes.do(vote_manager.upload_votes)
# Start the scheduler in a separate thread
# scheduler_thread = Thread(target=run_scheduler, args=(vote_manager,), daemon=True)
# scheduler_thread.start()
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
LEADERBOARD_DF, HARD_LEADERBOARD_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = init_space()
# HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = init_space()
# Data processing for plots now only on demand in the respective Gradio tab
# def load_and_create_plots():
# plot_df = create_plot_df(create_scores_df(LEADERBOARD_DF))
# return plot_df
# Function to check if a user is logged in
def check_login(profile: gr.OAuthProfile | None) -> bool:
if profile is None:
return False
return True
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.type.name, type="checkboxgroup", label="Model Types"),
ColumnFilter(AutoEvalColumn.openness.name, type="checkboxgroup", label="Openness"),
ColumnFilter(AutoEvalColumn.size_range.name, type="dropdown", label="Model Size"),
ColumnFilter(AutoEvalColumn.moe.name, type="checkboxgroup", label="Model Architecture"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def init_others(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Gradio DataFrame is empty or None.")
return gr.Dataframe(dataframe, visible=False)
main_block = gr.Blocks(css=custom_css)
with main_block as demo:
with gr.Row(elem_id="header-row"):
gr.HTML(TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>")
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.Tab("๐ Hard Set") as hard_tabs:
with gr.TabItem("๐
Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench"):
hard_leaderboard = init_leaderboard(HARD_LEADERBOARD_DF)
gr.Markdown(
"""
**Notes:**
- For the limited compute, we now update the Hard Set leaderboard. (**We are open to sponsorship for more compute!**)
- _Hard Set_ vs _Full Set_:
- <u>Hard Set</u>: A subset of ~150 BigCodeBench tasks which is more user-facing and challenging.
- <u>Full Set</u>: The full set of 1140 BigCodeBench tasks.
- _Complete_ vs _Instruct_:
- <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This split tests if the models are good at coding.
- <u>Instruct</u> (๐ฅVibe Check๐ฅ): Code Generation based on the (less verbose) NL-oriented instructions. This split tests if the models are really capable enough to understand human intents to code.
- `Complete` and `Instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark splits.
- `Average` is the average of `Complete` and `Instruct` when both are available.
- `#Act Params (B)` is the number of activated model parameters during inference.
- Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
- For more details check the ๐ About section.
""",
elem_classes="markdown-text",
)
# Comment out or remove the Elo Rating tab
# with gr.TabItem("๐ Elo Rating", id="hard_elo"):
# with gr.Column():
# with gr.Group():
# gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
# hard_task_elo_map = gr.Plot()
# hard_elo_task_gr = init_others(HARD_ELO_TASK_DF)
# demo.load(plot_elo_mle, [hard_elo_task_gr],
# hard_task_elo_map)
# with gr.Group():
# gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
# hard_bench_elo_map = gr.Plot()
# hard_elo_bench_gr = init_others(HARD_ELO_BENCH_DF)
# demo.load(plot_elo_mle, [hard_elo_bench_gr],
# hard_bench_elo_map)
with gr.TabItem("๐งฉ Solve Rate", id="hard_solve"):
with gr.Column():
hard_complete_map = gr.Plot()
hard_complete_solve_gr = init_others(HARD_COMPLETE_SOLVE_DF)
demo.load(plot_solve_rate, [hard_complete_solve_gr,
gr.Textbox("Complete", visible=False),
gr.Number(10, visible=False),
gr.Number(16, visible=False),
], hard_complete_map)
hard_instruct_map = gr.Plot()
hard_instruct_solve_gr = init_others(HARD_INSTRUCT_SOLVE_DF)
demo.load(plot_solve_rate, [hard_instruct_solve_gr,
gr.Textbox("Instruct", visible=False),
gr.Number(10, visible=False),
gr.Number(16, visible=False),
], hard_instruct_map)
with gr.Tab("๐ฏ Full Set") as full_tabs:
with gr.TabItem("๐
Benchmark", elem_id="llm-benchmark-tab-table", id="full_bench"):
leaderboard = init_leaderboard(LEADERBOARD_DF)
gr.Markdown(
"""
**Notes:**
- _Complete_ vs _Instruct_:
- <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding.
- <u>Instruct</u> (๐ฅVibe Check๐ฅ): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code.
- `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants.
- Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
- For more details check the ๐ About section.
""",
elem_classes="markdown-text",
)
# Comment out or remove the Elo Rating tab
# with gr.TabItem("๐ Elo Rating", id="full_elo"):
# with gr.Column():
# with gr.Group():
#
# gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
# task_elo_map = gr.Plot()
# elo_task_gr = init_others(ELO_TASK_DF)
# demo.load(plot_elo_mle, [elo_task_gr], task_elo_map)
# with gr.Group():
# gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
# bench_elo_map = gr.Plot()
# elo_bench_gr = init_others(ELO_BENCH_DF)
# demo.load(plot_elo_mle, [elo_bench_gr], bench_elo_map)
with gr.TabItem("๐งฉ Solve Rate", id="full_solve"):
with gr.Column():
complete_map = gr.Plot()
complete_solve_gr = init_others(COMPLETE_SOLVE_DF)
demo.load(plot_solve_rate, [complete_solve_gr,
gr.Textbox("Complete", visible=False),
], complete_map)
instruct_map = gr.Plot()
instruct_solve_gr = init_others(INSTRUCT_SOLVE_DF)
demo.load(plot_solve_rate, [instruct_solve_gr,
gr.Textbox("Instruct", visible=False),
], instruct_map)
with gr.TabItem("๐ About", id=3):
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
with gr.TabItem("๐ Data Viewer", id="viewer"):
search_input = gr.Textbox(label="Search by keyword")
count_output = gr.Number(label="Number of filtered items")
index_slider = gr.Slider(minimum=0, maximum=len(DATA)-1, step=1, label="Select Index")
# show_solution = gr.Checkbox(label="Show Solution")
show_test = gr.Checkbox(label="Show Test Cases")
update_button = gr.Button("Update")
next_button = gr.Button("Next")
prev_button = gr.Button("Prev")
task_id_output = gr.Textbox(label="Task ID")
code_completion = gr.Code(language="python", label="Code Completion")
nl_instruction = gr.Code(language="markdown", label="Natural Language Instruction")
# solution = gr.Code(language="python", label="Solution")
test_cases = gr.Code(language="python", label="Test Cases")
update_button.click(
update_display,
inputs=[search_input, index_slider, show_test],
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
)
next_button.click(
lambda search, index, show_test: update_display(search, index + 1, show_test),
inputs=[search_input, index_slider, show_test],
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
)
prev_button.click(
lambda search, index, show_test: update_display(search, index - 1, show_test),
inputs=[search_input, index_slider, show_test],
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
)
# Initial load
demo.load(
update_display,
inputs=[search_input, index_slider, show_test],
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
)
# with gr.TabItem("๐ ๏ธ Code Execution (Beta)", id=5):
# gr.Markdown("""\
# ### Hard Set Ground Truth Pass Rate: 100%
# ### Full Set Ground Truth Pass Rate: 99.6%
# ### Note: The code execution session is no longer maintained. Please `pip install -U bigcodebench` and refer to [BigCodeBench Repository](https://github.com/bigcode-project/bigcodebench).
# """)
# with gr.Row():
# jsonl_file = gr.File(label="Upload JSONL file", file_types=[".jsonl"])
# split = gr.Dropdown(choices=["complete", "instruct"], label="Split", value="complete")
# subset = gr.Dropdown(choices=["hard", "full"], label="Subset", value="hard")
# with gr.Row():
# parallel = gr.Number(label="Parallel (optional)", precision=0)
# min_time_limit = gr.Number(label="Min Time Limit", value=1, precision=1)
# max_as_limit = gr.Number(label="Max AS Limit", value=25*1024, precision=0)
# with gr.Row():
# max_data_limit = gr.Number(label="Max Data Limit", value=25*1024, precision=0)
# max_stack_limit = gr.Number(label="Max Stack Limit", value=10, precision=0)
# check_gt_only = gr.Checkbox(label="Check GT Only", value=False, visible=False)
# no_gt = gr.Checkbox(label="No GT", value=False, visible=False)
# command_output = gr.Textbox(label="Command", value=default_command, interactive=False)
# with gr.Row():
# submit_btn = gr.Button("Run Evaluation")
# download_btn = gr.DownloadButton(label="Download Result", visible=False)
# log_output = gr.Textbox(label="Execution Logs", lines=20)
# input_components = [
# jsonl_file, split, subset, parallel,
# min_time_limit, max_as_limit, max_data_limit, max_stack_limit,
# check_gt_only, no_gt
# ]
# for component in input_components:
# component.change(generate_command, inputs=input_components, outputs=command_output)
# def start_evaluation(command, jsonl_file, subset, split):
# lock.acquire()
# if jsonl_file is not None:
# result_path = os.path.basename(jsonl_file.name).replace(".jsonl", "_eval_results.json")
# else:
# result_path = None
# for log in stream_logs(command, jsonl_file):
# if jsonl_file is not None and jsonl_file.name.endswith(".jsonl"):
# yield log, gr.update(value=result_path, label=result_path, visible=True), gr.update(visible=False)
# else:
# yield log, gr.update(), gr.update()
# lock.release()
# result_file = find_result_file()
# if result_file:
# return gr.update(label="Evaluation completed. Result file found."), gr.update(value=result_file)
# # gr.Button(visible=False)#,
# # gr.DownloadButton(label="Download Result", value=result_file, visible=True))
# else:
# return gr.update(label="Evaluation completed. No result file found."), gr.update(value=result_path)
# # gr.Button("Run Evaluation", visible=True),
# # gr.DownloadButton(visible=False))
# submit_btn.click(start_evaluation,
# inputs=[command_output, jsonl_file, subset, split],
# outputs=[log_output, download_btn, submit_btn])
with gr.TabItem("๐ Request", id=4):
gr.Markdown(SUBMISSION_TEXT_3)
with gr.Row():
with gr.Accordion("๐ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
main_block.load(fn=get_latest_data_leaderboard, inputs=[leaderboard, hard_leaderboard, complete_solve_gr, instruct_solve_gr, hard_complete_solve_gr, hard_instruct_solve_gr], outputs=[leaderboard, hard_leaderboard, complete_solve_gr, instruct_solve_gr, hard_complete_solve_gr, hard_instruct_solve_gr])
# main_block.load(fn=get_latest_data_leaderboard, inputs=[hard_leaderboard, hard_elo_task_gr, hard_elo_bench_gr, hard_complete_solve_gr, hard_instruct_solve_gr], outputs=[hard_leaderboard, hard_elo_task_gr, hard_elo_bench_gr, hard_complete_solve_gr, hard_instruct_solve_gr])
# leaderboard.change(fn=get_latest_data_queue, inputs=None, outputs=[finished_eval_table, running_eval_table, pending_eval_table])
# pending_eval_table.change(fn=vote_manager.create_request_vote_df, inputs=[pending_eval_table], outputs=[pending_eval_table_votes])
main_block.queue(default_concurrency_limit=None)
def enable_space_ci_and_return_server(ui: gr.Blocks) -> WebhooksServer:
# Taken from https://huggingface.co/spaces/Wauplin/gradio-space-ci/blob/075119aee75ab5e7150bf0814eec91c83482e790/src/gradio_space_ci/webhook.py#L61
# Compared to original, this one do not monkeypatch Gradio which allows us to define more webhooks.
# ht to Lucain!
if SPACE_ID is None:
print("Not in a Space: Space CI disabled.")
return WebhooksServer(ui=main_block)
if IS_EPHEMERAL_SPACE:
print("In an ephemeral Space: Space CI disabled.")
return WebhooksServer(ui=main_block)
card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space")
config = card.data.get("space_ci", {})
print(f"Enabling Space CI with config from README: {config}")
return configure_space_ci(
blocks=ui,
trusted_authors=config.get("trusted_authors"),
private=config.get("private", "auto"),
variables=config.get("variables", "auto"),
secrets=config.get("secrets"),
hardware=config.get("hardware"),
storage=config.get("storage"),
)
# # Create webhooks server (with CI url if in Space and not ephemeral)
# webhooks_server = enable_space_ci_and_return_server(ui=main_block)
# # Add webhooks
# @webhooks_server.add_webhook
# def update_leaderboard(payload: WebhookPayload) -> None:
# """Redownloads the leaderboard dataset each time it updates"""
# if payload.repo.type == "dataset" and payload.event.action == "update":
# global NEW_DATA_ON_LEADERBOARD
# if NEW_DATA_ON_LEADERBOARD:
# return
# NEW_DATA_ON_LEADERBOARD = True
# for repo in [RESULT_REPO, HARD_RESULT_REPO, ELO_REPO, HARD_ELO_REPO, SOLVE_REPO, HARD_SOLVE_REPO]:
# datasets.load_dataset(
# repo,
# "default",
# cache_dir=HF_HOME,
# download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD,
# verification_mode="no_checks"
# )
# webhooks_server.launch()
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h as backup in case automatic updates are not working
# scheduler.start()
main_block.launch(show_error=True)
|