File size: 29,731 Bytes
bd2d698
7a7f67a
 
 
b298106
17dce22
7a7f67a
 
 
 
 
17dce22
 
7a7f67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b298106
 
7a7f67a
b298106
7a7f67a
 
 
 
dba3ac5
 
7a7f67a
2e84cf2
 
7a7f67a
 
 
 
 
 
 
 
 
 
1bb4e03
2e84cf2
7a7f67a
 
 
 
 
 
 
 
 
 
 
 
 
 
2e84cf2
 
 
 
7a7f67a
 
 
 
 
dba3ac5
 
 
 
 
 
 
 
 
 
 
bb1048a
dba3ac5
 
 
 
 
 
 
 
 
 
 
bb1048a
dba3ac5
 
 
 
 
 
bb1048a
dba3ac5
 
 
 
 
7a7f67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faf6544
7a7f67a
2e84cf2
 
 
 
faf6544
 
7a7f67a
 
 
 
faf6544
7a7f67a
2e84cf2
 
 
 
faf6544
 
7a7f67a
 
 
 
 
 
 
 
 
 
2e84cf2
7a7f67a
4021735
faf6544
 
 
 
7a7f67a
 
 
 
 
2e84cf2
7a7f67a
4021735
7a7f67a
 
 
 
 
2e84cf2
 
 
 
 
 
 
 
 
 
7a7f67a
faf6544
 
 
 
 
2e84cf2
faf6544
 
 
 
 
 
 
2e84cf2
faf6544
 
 
 
7a7f67a
 
 
 
 
 
2e84cf2
7a7f67a
 
 
 
 
 
 
2e84cf2
7a7f67a
 
 
 
 
 
ae7a86d
 
faf6544
2e84cf2
 
 
 
 
faf6544
2e84cf2
 
7a7f67a
 
2e84cf2
7a7f67a
 
 
 
 
 
faf6544
7a7f67a
2e84cf2
 
 
 
faf6544
 
7a7f67a
 
 
2e84cf2
faf6544
7a7f67a
2e84cf2
faf6544
7a7f67a
 
 
 
 
 
 
 
 
 
 
 
 
 
2e84cf2
6121aa7
7a7f67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b298106
 
7a7f67a
 
 
 
b298106
7a7f67a
 
 
14a3287
7a7f67a
 
b298106
faf6544
 
 
 
 
 
c3c5af3
faf6544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e84cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faf6544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7f67a
2e84cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7f67a
faf6544
 
 
 
 
 
 
 
 
 
 
 
7a7f67a
 
777def4
dba3ac5
 
 
 
bb1048a
dba3ac5
a87d51f
3a99615
 
dba3ac5
 
 
497f0f1
bb1048a
dba3ac5
 
 
 
bb1048a
 
dba3ac5
3a99615
d693904
 
3a99615
 
 
d693904
 
3a99615
 
dba3ac5
 
 
bb1048a
 
dba3ac5
777def4
180a1c8
 
 
 
 
 
 
 
 
 
 
777def4
180a1c8
 
 
 
777def4
180a1c8
 
 
 
 
777def4
180a1c8
 
 
 
 
777def4
180a1c8
 
 
 
 
777def4
180a1c8
 
777def4
 
180a1c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0405e84
180a1c8
 
 
c8870ae
b736753
7a7f67a
 
 
 
 
 
 
 
 
 
 
 
2e84cf2
faf6544
7a7f67a
 
 
e92dfe1
7a7f67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd2d698
8a21a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7f67a
 
 
8a21a5f
7a7f67a
eb84112
 
 
bc455c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
import os
import logging
import time
import datetime
import gradio as gr
from threading import Thread, Lock
import datasets
from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler

lock = Lock()

# Start ephemeral Spaces on PRs (see config in README.md)
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    # INTRODUCTION_TEXT,
    TITLE,
    ABOUT_TEXT,
    SUBMISSION_TEXT_3,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    fields,
    EvalQueueColumn
)
from src.envs import (
    API,
    EVAL_REQUESTS_PATH,
    RESULT_REPO,
    DATA_VERSION,
    DATA_REPO,
    HARD_RESULT_REPO,
    # ELO_REPO,  # Comment out
    # HARD_ELO_REPO,  # Comment out
    SOLVE_REPO,
    HARD_SOLVE_REPO,
    HF_TOKEN,
    QUEUE_REPO,
    REPO_ID,
    VOTES_REPO,
    VOTES_PATH,
    HF_HOME,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.execute import generate_command, default_command, stream_logs, find_result_file
from src.tools.plots import plot_solve_rate
# from src.voting.vote_system import VoteManager, run_scheduler

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# Start ephemeral Spaces on PRs (see config in README.md)
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci

# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
NEW_DATA_ON_LEADERBOARD = True
LEADERBOARD_DF = None
HARD_LEADERBOARD_DF = None
# ELO_TASK_DF = None  # Comment out
# ELO_BENCH_DF = None  # Comment out
# HARD_ELO_TASK_DF = None  # Comment out
# HARD_ELO_BENCH_DF = None  # Comment out
COMPLETE_SOLVE_DF = None
INSTRUCT_SOLVE_DF = None
HARD_COMPLETE_SOLVE_DF = None
HARD_INSTRUCT_SOLVE_DF = None

DATA = datasets.load_dataset(DATA_REPO, "default", cache_dir=HF_HOME, split=DATA_VERSION,
                             verification_mode="no_checks")


def filter_data(data, keyword):
    if not keyword:
        return data
    filtered_data = [item for item in data if keyword.lower() in item['complete_prompt'].lower()]
    return filtered_data


def update_display(search_keyword, index, show_test):
    filtered_data = filter_data(DATA, search_keyword)
    
    if not filtered_data:
        return ["No data available. Check the search criteria."] + [""] * 4 + [0, gr.update(maximum=0, value=0)]
    
    max_index = len(filtered_data) - 1
    index = min(max(0, index), max_index)
    
    task_id = filtered_data[index]['task_id']
    snippet1 = filtered_data[index]['complete_prompt']
    snippet2 = filtered_data[index]['instruct_prompt']
    # snippet3 = filtered_data[index]['canonical_solution'] if show_solution else ""
    snippet4 = filtered_data[index]['test'] if show_test else ""
    
    return [
        task_id,
        snippet1,
        snippet2,
        # snippet3,
        snippet4,
        len(filtered_data),
        gr.update(maximum=max_index, value=index)
    ]

def restart_space():
    API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)


def time_diff_wrapper(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        diff = end_time - start_time
        logging.info(f"Time taken for {func.__name__}: {diff} seconds")
        return result

    return wrapper


@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
    """Download dataset with exponential backoff retries."""
    attempt = 0
    while attempt < max_attempts:
        try:
            logging.info(f"Downloading {repo_id} to {local_dir}")
            snapshot_download(
                repo_id=repo_id,
                local_dir=local_dir,
                repo_type=repo_type,
                tqdm_class=None,
                etag_timeout=30,
                max_workers=8,
            )
            logging.info("Download successful")
            return
        except Exception as e:
            wait_time = backoff_factor**attempt
            logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
            time.sleep(wait_time)
            attempt += 1
    raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")

def get_latest_data_leaderboard(
    leaderboard_initial_df = None,
    hard_leaderboard_initial_df = None,
    # elo_task_df = None,  # Comment out
    # elo_bench_df = None,  # Comment out
    # hard_elo_task_df = None,  # Comment out
    # hard_elo_bench_df = None,  # Comment out
    complete_solve_df = None,
    instruct_solve_df = None,
    hard_complete_solve_df = None,
    hard_instruct_solve_df = None
    ):
    global NEW_DATA_ON_LEADERBOARD
    global LEADERBOARD_DF
    global HARD_LEADERBOARD_DF
    # global ELO_TASK_DF  # Comment out
    # global ELO_BENCH_DF  # Comment out
    # global HARD_ELO_TASK_DF  # Comment out
    # global HARD_ELO_BENCH_DF  # Comment out
    global COMPLETE_SOLVE_DF
    global INSTRUCT_SOLVE_DF
    global HARD_COMPLETE_SOLVE_DF
    global HARD_INSTRUCT_SOLVE_DF

    if NEW_DATA_ON_LEADERBOARD:
        print("Leaderboard updated at reload!")
        leaderboard_dataset = datasets.load_dataset(
            RESULT_REPO, 
            "default", 
            split="train", 
            cache_dir=HF_HOME, 
            download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
            verification_mode="no_checks"
        ).filter(lambda x: x['complete'] is not None or x['instruct'] is not None)
        LEADERBOARD_DF = get_leaderboard_df(
            leaderboard_dataset=leaderboard_dataset, 
            cols=COLS,
        )
        hard_leaderboard_dataset = datasets.load_dataset(
            HARD_RESULT_REPO, 
            "default", 
            split="train", 
            cache_dir=HF_HOME, 
            download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
            verification_mode="no_checks"
        ).filter(lambda x: x['complete'] is not None or x['instruct'] is not None)
        hard_leaderboard_df = get_leaderboard_df(
            leaderboard_dataset=hard_leaderboard_dataset, 
            cols=COLS,
        )
        HARD_LEADERBOARD_DF = hard_leaderboard_df

        # Comment out Elo dataset loading
        # elo_task_df = datasets.load_dataset(...)
        # elo_bench_df = datasets.load_dataset(...)
        # ELO_TASK_DF = elo_task_df
        # ELO_BENCH_DF = elo_bench_df
        # hard_elo_task_df = datasets.load_dataset(...)
        # hard_elo_bench_df = datasets.load_dataset(...)
        # HARD_ELO_TASK_DF = hard_elo_task_df
        # HARD_ELO_BENCH_DF = hard_elo_bench_df
        
        complete_solve_df = datasets.load_dataset(
            SOLVE_REPO,
            "default",
            split="complete",
            cache_dir=HF_HOME,
            download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
            verification_mode="no_checks"
        ).to_pandas()
        instruct_solve_df = datasets.load_dataset(
            SOLVE_REPO,
            "default",
            split="instruct",
            cache_dir=HF_HOME,
            download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
            verification_mode="no_checks"
        ).to_pandas()
        COMPLETE_SOLVE_DF = complete_solve_df
        INSTRUCT_SOLVE_DF = instruct_solve_df
        
        hard_complete_solve_df = datasets.load_dataset(
            HARD_SOLVE_REPO,
            "default",
            split="complete",
            cache_dir=HF_HOME,
            download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
            verification_mode="no_checks"
        ).to_pandas()
        hard_instruct_solve_df = datasets.load_dataset(
            HARD_SOLVE_REPO,
            "default",
            split="instruct",
            cache_dir=HF_HOME,
            download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
            verification_mode="no_checks"
        ).to_pandas()        
        HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df
        HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df
        
        NEW_DATA_ON_LEADERBOARD = False

    else:
        LEADERBOARD_DF = leaderboard_initial_df
        HARD_LEADERBOARD_DF = hard_leaderboard_initial_df
        # ELO_TASK_DF = elo_task_df  # Comment out
        # ELO_BENCH_DF = elo_bench_df  # Comment out
        # HARD_ELO_TASK_DF = hard_elo_task_df  # Comment out
        # HARD_ELO_BENCH_DF = hard_elo_bench_df  # Comment out
        COMPLETE_SOLVE_DF = complete_solve_df
        INSTRUCT_SOLVE_DF = instruct_solve_df
        HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df
        HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df
        
    return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)


def init_space():
    """Initializes the application space, loading only necessary data."""

    # Always redownload the leaderboard DataFrame
    global LEADERBOARD_DF
    global HARD_LEADERBOARD_DF
    # global ELO_TASK_DF  # Comment out
    # global ELO_BENCH_DF  # Comment out
    # global HARD_ELO_TASK_DF  # Comment out
    # global HARD_ELO_BENCH_DF  # Comment out
    global COMPLETE_SOLVE_DF
    global INSTRUCT_SOLVE_DF
    global HARD_COMPLETE_SOLVE_DF
    global HARD_INSTRUCT_SOLVE_DF
    
    LEADERBOARD_DF, HARD_LEADERBOARD_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = get_latest_data_leaderboard()
    # HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = get_latest_data_leaderboard()

    return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)
    # return (HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)

# Initialize VoteManager
# vote_manager = VoteManager(VOTES_PATH, EVAL_REQUESTS_PATH, VOTES_REPO)


# Schedule the upload_votes method to run every 15 minutes
# schedule.every(15).minutes.do(vote_manager.upload_votes)

# Start the scheduler in a separate thread
# scheduler_thread = Thread(target=run_scheduler, args=(vote_manager,), daemon=True)
# scheduler_thread.start()

# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
LEADERBOARD_DF, HARD_LEADERBOARD_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = init_space()
# HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = init_space()

# Data processing for plots now only on demand in the respective Gradio tab
# def load_and_create_plots():
#     plot_df = create_plot_df(create_scores_df(LEADERBOARD_DF))
#     return plot_df

# Function to check if a user is logged in
def check_login(profile: gr.OAuthProfile | None) -> bool:
    if profile is None:
        return False
    return True

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.type.name, type="checkboxgroup", label="Model Types"),
            ColumnFilter(AutoEvalColumn.openness.name, type="checkboxgroup", label="Openness"),
            ColumnFilter(AutoEvalColumn.size_range.name, type="dropdown", label="Model Size"),
            ColumnFilter(AutoEvalColumn.moe.name, type="checkboxgroup", label="Model Architecture"),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
        )


def init_others(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Gradio DataFrame is empty or None.")
    return gr.Dataframe(dataframe, visible=False)

main_block = gr.Blocks(css=custom_css)
with main_block as demo:
    with gr.Row(elem_id="header-row"):
        gr.HTML(TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>")
    
    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.Tab("๐Ÿ’Ž Hard Set") as hard_tabs:
            with gr.TabItem("๐Ÿ… Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench"):
                hard_leaderboard = init_leaderboard(HARD_LEADERBOARD_DF)
                gr.Markdown(
                    """
                **Notes:**
                - For the limited compute, we now update the Hard Set leaderboard. (**We are open to sponsorship for more compute!**)
                - _Hard Set_ vs _Full Set_:
                    - <u>Hard Set</u>: A subset of ~150 BigCodeBench tasks which is more user-facing and challenging.
                    - <u>Full Set</u>: The full set of 1140 BigCodeBench tasks.
                - _Complete_ vs _Instruct_:
                    - <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This split tests if the models are good at coding.
                    - <u>Instruct</u> (๐Ÿ”ฅVibe Check๐Ÿ”ฅ): Code Generation based on the (less verbose) NL-oriented instructions. This split tests if the models are really capable enough to understand human intents to code.
                - `Complete` and `Instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark splits.
                - `Average` is the average of `Complete` and `Instruct` when both are available.
                - `#Act Params (B)` is the number of activated model parameters during inference.
                - Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
                - For more details check the ๐Ÿ“ About section.
                """,
                    elem_classes="markdown-text",
                )
            
            # Comment out or remove the Elo Rating tab
            # with gr.TabItem("๐Ÿ“Š Elo Rating", id="hard_elo"):
            #     with gr.Column():
            #         with gr.Group():
            #             gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
            #             hard_task_elo_map = gr.Plot()
            #             hard_elo_task_gr = init_others(HARD_ELO_TASK_DF)
            #             demo.load(plot_elo_mle, [hard_elo_task_gr],
            #                         hard_task_elo_map)
            #         with gr.Group():
            #             gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
            #             hard_bench_elo_map = gr.Plot()
            #             hard_elo_bench_gr = init_others(HARD_ELO_BENCH_DF)
            #             demo.load(plot_elo_mle, [hard_elo_bench_gr],
            #                         hard_bench_elo_map)
                        
            with gr.TabItem("๐Ÿงฉ Solve Rate", id="hard_solve"):
                with gr.Column():
                    hard_complete_map = gr.Plot()
                    hard_complete_solve_gr = init_others(HARD_COMPLETE_SOLVE_DF)
                    demo.load(plot_solve_rate, [hard_complete_solve_gr,
                                                gr.Textbox("Complete", visible=False),
                                                gr.Number(10, visible=False),
                                                gr.Number(16, visible=False),
                                                ], hard_complete_map)
                    hard_instruct_map = gr.Plot()
                    hard_instruct_solve_gr = init_others(HARD_INSTRUCT_SOLVE_DF)
                    demo.load(plot_solve_rate, [hard_instruct_solve_gr,
                                                gr.Textbox("Instruct", visible=False),
                                                gr.Number(10, visible=False),
                                                gr.Number(16, visible=False),
                                                ], hard_instruct_map)
        with gr.Tab("๐ŸŽฏ Full Set") as full_tabs:
            with gr.TabItem("๐Ÿ… Benchmark", elem_id="llm-benchmark-tab-table", id="full_bench"):
                leaderboard = init_leaderboard(LEADERBOARD_DF)
                gr.Markdown(
                    """
                **Notes:**
                - _Complete_ vs _Instruct_:
                    - <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding.
                    - <u>Instruct</u> (๐Ÿ”ฅVibe Check๐Ÿ”ฅ): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code.
                - `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants.
                - Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
                - For more details check the ๐Ÿ“ About section.
                """,
                    elem_classes="markdown-text",
                )
            
            # Comment out or remove the Elo Rating tab
            # with gr.TabItem("๐Ÿ“Š Elo Rating", id="full_elo"):
            #     with gr.Column():
            #         with gr.Group():
            #             
            #             gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
            #             task_elo_map = gr.Plot()
            #             elo_task_gr = init_others(ELO_TASK_DF)
            #             demo.load(plot_elo_mle, [elo_task_gr], task_elo_map)
            #         with gr.Group():
            #             gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
            #             bench_elo_map = gr.Plot()
            #             elo_bench_gr = init_others(ELO_BENCH_DF)
            #             demo.load(plot_elo_mle, [elo_bench_gr], bench_elo_map)
                    
            with gr.TabItem("๐Ÿงฉ Solve Rate", id="full_solve"):
                with gr.Column():
                    complete_map = gr.Plot()
                    complete_solve_gr = init_others(COMPLETE_SOLVE_DF)
                    demo.load(plot_solve_rate, [complete_solve_gr,
                                                gr.Textbox("Complete", visible=False),
                                                ], complete_map)
                    instruct_map = gr.Plot()
                    instruct_solve_gr = init_others(INSTRUCT_SOLVE_DF)
                    demo.load(plot_solve_rate, [instruct_solve_gr,
                                                gr.Textbox("Instruct", visible=False),
                                                ], instruct_map)
        with gr.TabItem("๐Ÿ“ About", id=3):
            gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")

        with gr.TabItem("๐Ÿ”Ž Data Viewer", id="viewer"):
            search_input = gr.Textbox(label="Search by keyword")
            count_output = gr.Number(label="Number of filtered items")
            index_slider = gr.Slider(minimum=0, maximum=len(DATA)-1, step=1, label="Select Index")
            # show_solution = gr.Checkbox(label="Show Solution")
            show_test = gr.Checkbox(label="Show Test Cases")
            update_button = gr.Button("Update")
            next_button = gr.Button("Next")
            prev_button = gr.Button("Prev")
            
            task_id_output = gr.Textbox(label="Task ID")
            code_completion = gr.Code(language="python", label="Code Completion")
            nl_instruction = gr.Code(language="markdown", label="Natural Language Instruction")
            # solution = gr.Code(language="python", label="Solution")
            test_cases = gr.Code(language="python", label="Test Cases")
            
            update_button.click(
                update_display, 
                inputs=[search_input, index_slider, show_test],
                outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
            )
            next_button.click(
                lambda search, index, show_test: update_display(search, index + 1, show_test),
                inputs=[search_input, index_slider, show_test],
                outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
            )
            prev_button.click(
                lambda search, index, show_test: update_display(search, index - 1, show_test),
                inputs=[search_input, index_slider, show_test],
                outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
            )
            # Initial load
            demo.load(
                update_display, 
                inputs=[search_input, index_slider, show_test],
                outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
            )
            
#         with gr.TabItem("๐Ÿ› ๏ธ Code Execution (Beta)", id=5):
#             gr.Markdown("""\
# ### Hard Set Ground Truth Pass Rate: 100%
# ### Full Set Ground Truth Pass Rate: 99.6%

# ### Note: The code execution session is no longer maintained. Please `pip install -U bigcodebench` and refer to [BigCodeBench Repository](https://github.com/bigcode-project/bigcodebench).
# """)
#             with gr.Row():
#                 jsonl_file = gr.File(label="Upload JSONL file", file_types=[".jsonl"])
#                 split = gr.Dropdown(choices=["complete", "instruct"], label="Split", value="complete")
#                 subset = gr.Dropdown(choices=["hard", "full"], label="Subset", value="hard")
            
#             with gr.Row():
#                 parallel = gr.Number(label="Parallel (optional)", precision=0)
#                 min_time_limit = gr.Number(label="Min Time Limit", value=1, precision=1)
#                 max_as_limit = gr.Number(label="Max AS Limit", value=25*1024, precision=0)
            
#             with gr.Row():
#                 max_data_limit = gr.Number(label="Max Data Limit", value=25*1024, precision=0)
#                 max_stack_limit = gr.Number(label="Max Stack Limit", value=10, precision=0)
#                 check_gt_only = gr.Checkbox(label="Check GT Only", value=False, visible=False)
#                 no_gt = gr.Checkbox(label="No GT", value=False, visible=False)
            
#             command_output = gr.Textbox(label="Command", value=default_command, interactive=False)
#             with gr.Row():
#                 submit_btn = gr.Button("Run Evaluation")
#                 download_btn = gr.DownloadButton(label="Download Result", visible=False)
#             log_output = gr.Textbox(label="Execution Logs", lines=20)
            
#             input_components = [
#                 jsonl_file, split, subset, parallel,
#                 min_time_limit, max_as_limit, max_data_limit, max_stack_limit,
#                 check_gt_only, no_gt
#             ]
            
#             for component in input_components:
#                 component.change(generate_command, inputs=input_components, outputs=command_output)
                
            
#             def start_evaluation(command, jsonl_file, subset, split):
#                 lock.acquire()
#                 if jsonl_file is not None:
#                     result_path = os.path.basename(jsonl_file.name).replace(".jsonl", "_eval_results.json")
#                 else:
#                     result_path = None

#                 for log in stream_logs(command, jsonl_file):
#                     if jsonl_file is not None and jsonl_file.name.endswith(".jsonl"):
#                         yield log, gr.update(value=result_path, label=result_path, visible=True), gr.update(visible=False)
#                     else:
#                         yield log, gr.update(), gr.update()
#                 lock.release()
#                 result_file = find_result_file()
#                 if result_file:
#                     return gr.update(label="Evaluation completed. Result file found."), gr.update(value=result_file)
#                             # gr.Button(visible=False)#,
#                             # gr.DownloadButton(label="Download Result", value=result_file, visible=True))
#                 else:
#                     return gr.update(label="Evaluation completed. No result file found."), gr.update(value=result_path)
#                             # gr.Button("Run Evaluation", visible=True),
#                             # gr.DownloadButton(visible=False))
                    
#             submit_btn.click(start_evaluation,
#                         inputs=[command_output, jsonl_file, subset, split],
#                         outputs=[log_output, download_btn, submit_btn])
        
        with gr.TabItem("๐Ÿš€ Request", id=4):
            gr.Markdown(SUBMISSION_TEXT_3)
    
    with gr.Row():
        with gr.Accordion("๐Ÿ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )
                    
    main_block.load(fn=get_latest_data_leaderboard, inputs=[leaderboard, hard_leaderboard, complete_solve_gr, instruct_solve_gr, hard_complete_solve_gr, hard_instruct_solve_gr], outputs=[leaderboard, hard_leaderboard, complete_solve_gr, instruct_solve_gr, hard_complete_solve_gr, hard_instruct_solve_gr])
    # main_block.load(fn=get_latest_data_leaderboard, inputs=[hard_leaderboard, hard_elo_task_gr, hard_elo_bench_gr, hard_complete_solve_gr, hard_instruct_solve_gr], outputs=[hard_leaderboard, hard_elo_task_gr, hard_elo_bench_gr, hard_complete_solve_gr, hard_instruct_solve_gr])
    # leaderboard.change(fn=get_latest_data_queue, inputs=None, outputs=[finished_eval_table, running_eval_table, pending_eval_table])
    # pending_eval_table.change(fn=vote_manager.create_request_vote_df, inputs=[pending_eval_table], outputs=[pending_eval_table_votes])

main_block.queue(default_concurrency_limit=None)


def enable_space_ci_and_return_server(ui: gr.Blocks) -> WebhooksServer:
    # Taken from https://huggingface.co/spaces/Wauplin/gradio-space-ci/blob/075119aee75ab5e7150bf0814eec91c83482e790/src/gradio_space_ci/webhook.py#L61
    # Compared to original, this one do not monkeypatch Gradio which allows us to define more webhooks.
    # ht to Lucain!
    if SPACE_ID is None:
        print("Not in a Space: Space CI disabled.")
        return WebhooksServer(ui=main_block)

    if IS_EPHEMERAL_SPACE:
        print("In an ephemeral Space: Space CI disabled.")
        return WebhooksServer(ui=main_block)

    card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space")
    config = card.data.get("space_ci", {})
    print(f"Enabling Space CI with config from README: {config}")

    return configure_space_ci(
        blocks=ui,
        trusted_authors=config.get("trusted_authors"),
        private=config.get("private", "auto"),
        variables=config.get("variables", "auto"),
        secrets=config.get("secrets"),
        hardware=config.get("hardware"),
        storage=config.get("storage"),
    )

# # Create webhooks server (with CI url if in Space and not ephemeral)
# webhooks_server = enable_space_ci_and_return_server(ui=main_block)

# # Add webhooks
# @webhooks_server.add_webhook
# def update_leaderboard(payload: WebhookPayload) -> None:
#     """Redownloads the leaderboard dataset each time it updates"""
#     if payload.repo.type == "dataset" and payload.event.action == "update":
#         global NEW_DATA_ON_LEADERBOARD
#         if NEW_DATA_ON_LEADERBOARD:
#             return
#         NEW_DATA_ON_LEADERBOARD = True

#         for repo in [RESULT_REPO, HARD_RESULT_REPO, ELO_REPO, HARD_ELO_REPO, SOLVE_REPO, HARD_SOLVE_REPO]:
#             datasets.load_dataset(
#                 repo, 
#                 "default", 
#                 cache_dir=HF_HOME, 
#                 download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, 
#                 verification_mode="no_checks"
#             )
        
        

# webhooks_server.launch()

# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h as backup in case automatic updates are not working
# scheduler.start()
main_block.launch(show_error=True)