File size: 5,175 Bytes
7a7f67a 5874e3d 7a7f67a 9739b47 7a7f67a 5874e3d 7a7f67a de4c2d6 7a7f67a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import json
import logging
from datetime import datetime
import pandas as pd
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Convert ISO 8601 dates to datetime objects for comparison
def parse_iso8601_datetime(date_str):
if date_str.endswith('Z'):
date_str = date_str[:-1] + '+00:00'
return datetime.fromisoformat(date_str)
def parse_datetime(datetime_str):
formats = [
"%Y-%m-%dT%H-%M-%S.%f", # Format with dashes
"%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons
"%Y-%m-%dT%H %M %S.%f", # Spaces as separator
]
for fmt in formats:
try:
return datetime.strptime(datetime_str, fmt)
except ValueError:
continue
# in rare cases set unix start time for files with incorrect time (legacy files)
logging.error(f"No valid date format found for: {datetime_str}")
return datetime(1970, 1, 1)
def load_json_data(file_path):
"""Safely load JSON data from a file."""
try:
with open(file_path, "r") as file:
return json.load(file)
except json.JSONDecodeError:
print(f"Error reading JSON from {file_path}")
return None # Or raise an exception
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
column_map = {
"T": "T",
"model": "Model",
"type": "Model Type",
"size_range": "Size Range",
"complete": "Complete",
"instruct": "Instruct",
"average": "Average",
"elo_mle": "Elo Rating",
"link": "Link",
"act_param": "#Act Params (B)",
"size": "#Params (B)",
"moe": "MoE",
# "lazy": "Lazy",
"openness": "Openness",
# "direct_complete": "Direct Completion",
}
type_map = {
"🔶": "🔶 Chat Models (RLHF, DPO, IFT, ...)",
"🟢": "🟢 Base Models"
}
moe_map = {
True: "MoE",
False: "Dense"
}
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass(frozen=True)
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["T", ColumnContent, ColumnContent(column_map["T"], "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent(column_map["model"], "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["type", ColumnContent, ColumnContent(column_map["type"], "str", False, True)])
auto_eval_column_dict.append(["size_range", ColumnContent, ColumnContent(column_map["size_range"], "str", False, True)])
# Scores
auto_eval_column_dict.append(["complete", ColumnContent, ColumnContent(column_map["complete"], "number", True)])
auto_eval_column_dict.append(["instruct", ColumnContent, ColumnContent(column_map["instruct"], "number", True)])
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(column_map["average"], "number", True)])
auto_eval_column_dict.append(["elo_mle", ColumnContent, ColumnContent(column_map["elo_mle"], "number", True)])
# Model information
auto_eval_column_dict.append(["act_param", ColumnContent, ColumnContent(column_map["act_param"], "number", True)])
auto_eval_column_dict.append(["link", ColumnContent, ColumnContent(column_map["link"], "str", False, True)])
auto_eval_column_dict.append(["size", ColumnContent, ColumnContent(column_map["size"], "number", False)])
# auto_eval_column_dict.append(["lazy", ColumnContent, ColumnContent(column_map["lazy"], "bool", False, True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent(column_map["moe"], "str", False, True)])
auto_eval_column_dict.append(["openness", ColumnContent, ColumnContent(column_map["openness"], "str", False, True)])
# auto_eval_column_dict.append(["direct_complete", ColumnContent, ColumnContent(column_map["direct_complete"], "bool", False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model_link = ColumnContent("link", "markdown", True)
model_name = ColumnContent("model", "str", True)
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}
|