Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Terry Zhuo
commited on
Commit
·
dff8ab5
1
Parent(s):
c7de537
update
Browse files
app.py
CHANGED
@@ -1,648 +1,178 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import
|
3 |
import time
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
import
|
8 |
-
from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard
|
9 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
from src.display.about import (
|
16 |
-
CITATION_BUTTON_LABEL,
|
17 |
-
CITATION_BUTTON_TEXT,
|
18 |
-
# INTRODUCTION_TEXT,
|
19 |
-
TITLE,
|
20 |
-
ABOUT_TEXT,
|
21 |
-
SUBMISSION_TEXT_3,
|
22 |
-
)
|
23 |
-
from src.display.css_html_js import custom_css
|
24 |
-
from src.display.utils import (
|
25 |
-
COLS,
|
26 |
-
EVAL_COLS,
|
27 |
-
EVAL_TYPES,
|
28 |
-
AutoEvalColumn,
|
29 |
-
fields,
|
30 |
-
EvalQueueColumn
|
31 |
-
)
|
32 |
-
from src.envs import (
|
33 |
-
API,
|
34 |
-
EVAL_REQUESTS_PATH,
|
35 |
-
RESULT_REPO,
|
36 |
-
DATA_VERSION,
|
37 |
-
DATA_REPO,
|
38 |
-
HARD_RESULT_REPO,
|
39 |
-
ELO_REPO,
|
40 |
-
HARD_ELO_REPO,
|
41 |
-
SOLVE_REPO,
|
42 |
-
HARD_SOLVE_REPO,
|
43 |
-
HF_TOKEN,
|
44 |
-
QUEUE_REPO,
|
45 |
-
REPO_ID,
|
46 |
-
VOTES_REPO,
|
47 |
-
VOTES_PATH,
|
48 |
-
HF_HOME,
|
49 |
-
)
|
50 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
51 |
-
from src.execute import generate_command, is_running, lock, stream_logs, find_result_file
|
52 |
-
from src.tools.plots import plot_elo_mle, plot_solve_rate
|
53 |
-
# from src.voting.vote_system import VoteManager, run_scheduler
|
54 |
-
|
55 |
-
# Configure logging
|
56 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
57 |
-
|
58 |
-
# Start ephemeral Spaces on PRs (see config in README.md)
|
59 |
-
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci
|
60 |
-
|
61 |
-
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
62 |
-
# This controls whether a full initialization should be performed.
|
63 |
-
DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
|
64 |
-
NEW_DATA_ON_LEADERBOARD = True
|
65 |
-
LEADERBOARD_DF = None
|
66 |
-
HARD_LEADERBOARD_DF = None
|
67 |
-
ELO_TASK_DF = None
|
68 |
-
ELO_BENCH_DF = None
|
69 |
-
HARD_ELO_TASK_DF = None
|
70 |
-
HARD_ELO_BENCH_DF = None
|
71 |
-
COMPLETE_SOLVE_DF = None
|
72 |
-
INSTRUCT_SOLVE_DF = None
|
73 |
-
HARD_COMPLETE_SOLVE_DF = None
|
74 |
-
HARD_INSTRUCT_SOLVE_DF = None
|
75 |
-
|
76 |
-
DATA = datasets.load_dataset(DATA_REPO, "default", cache_dir=HF_HOME, split=DATA_VERSION,
|
77 |
-
verification_mode="no_checks")
|
78 |
-
|
79 |
-
|
80 |
-
def filter_data(data, keyword):
|
81 |
-
if not keyword:
|
82 |
-
return data
|
83 |
-
filtered_data = [item for item in data if keyword.lower() in item['complete_prompt'].lower()]
|
84 |
-
return filtered_data
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
89 |
|
90 |
-
if not
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
index = min(max(0, index), max_index)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
snippet2 = filtered_data[index]['instruct_prompt']
|
99 |
-
# snippet3 = filtered_data[index]['canonical_solution'] if show_solution else ""
|
100 |
-
snippet4 = filtered_data[index]['test'] if show_test else ""
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
def time_diff_wrapper(func):
|
117 |
-
def wrapper(*args, **kwargs):
|
118 |
-
start_time = time.time()
|
119 |
-
result = func(*args, **kwargs)
|
120 |
-
end_time = time.time()
|
121 |
-
diff = end_time - start_time
|
122 |
-
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
|
123 |
-
return result
|
124 |
-
|
125 |
-
return wrapper
|
126 |
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
133 |
try:
|
134 |
-
|
135 |
-
|
136 |
-
repo_id=repo_id,
|
137 |
-
local_dir=local_dir,
|
138 |
-
repo_type=repo_type,
|
139 |
-
tqdm_class=None,
|
140 |
-
etag_timeout=30,
|
141 |
-
max_workers=8,
|
142 |
-
)
|
143 |
-
logging.info("Download successful")
|
144 |
-
return
|
145 |
except Exception as e:
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
hard_complete_solve_df = None,
|
162 |
-
hard_instruct_solve_df = None
|
163 |
-
):
|
164 |
-
global NEW_DATA_ON_LEADERBOARD
|
165 |
-
global LEADERBOARD_DF
|
166 |
-
global HARD_LEADERBOARD_DF
|
167 |
-
global ELO_TASK_DF
|
168 |
-
global ELO_BENCH_DF
|
169 |
-
global HARD_ELO_TASK_DF
|
170 |
-
global HARD_ELO_BENCH_DF
|
171 |
-
global COMPLETE_SOLVE_DF
|
172 |
-
global INSTRUCT_SOLVE_DF
|
173 |
-
global HARD_COMPLETE_SOLVE_DF
|
174 |
-
global HARD_INSTRUCT_SOLVE_DF
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
leaderboard_dataset = datasets.load_dataset(
|
179 |
-
RESULT_REPO,
|
180 |
-
"default",
|
181 |
-
split="train",
|
182 |
-
cache_dir=HF_HOME,
|
183 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
184 |
-
verification_mode="no_checks"
|
185 |
-
)
|
186 |
-
LEADERBOARD_DF = get_leaderboard_df(
|
187 |
-
leaderboard_dataset=leaderboard_dataset,
|
188 |
-
cols=COLS,
|
189 |
-
)
|
190 |
-
hard_leaderboard_dataset = datasets.load_dataset(
|
191 |
-
HARD_RESULT_REPO,
|
192 |
-
"default",
|
193 |
-
split="train",
|
194 |
-
cache_dir=HF_HOME,
|
195 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
196 |
-
verification_mode="no_checks"
|
197 |
-
)
|
198 |
-
hard_leaderboard_df = get_leaderboard_df(
|
199 |
-
leaderboard_dataset=hard_leaderboard_dataset,
|
200 |
-
cols=COLS,
|
201 |
-
)
|
202 |
-
HARD_LEADERBOARD_DF = hard_leaderboard_df
|
203 |
|
204 |
-
|
205 |
-
ELO_REPO,
|
206 |
-
"default",
|
207 |
-
split="task_no_tie",
|
208 |
-
cache_dir=HF_HOME,
|
209 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
210 |
-
verification_mode="no_checks"
|
211 |
-
).to_pandas()
|
212 |
-
elo_bench_df = datasets.load_dataset(
|
213 |
-
ELO_REPO,
|
214 |
-
"default",
|
215 |
-
split="benchmark_tie",
|
216 |
-
cache_dir=HF_HOME,
|
217 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
218 |
-
verification_mode="no_checks"
|
219 |
-
).to_pandas()
|
220 |
-
ELO_TASK_DF = elo_task_df
|
221 |
-
ELO_BENCH_DF = elo_bench_df
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
"default",
|
226 |
-
split="task_no_tie",
|
227 |
-
cache_dir=HF_HOME,
|
228 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
229 |
-
verification_mode="no_checks"
|
230 |
-
).to_pandas()
|
231 |
-
hard_elo_bench_df = datasets.load_dataset(
|
232 |
-
HARD_ELO_REPO,
|
233 |
-
"default",
|
234 |
-
split="benchmark_tie",
|
235 |
-
cache_dir=HF_HOME,
|
236 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
237 |
-
verification_mode="no_checks"
|
238 |
-
).to_pandas()
|
239 |
-
HARD_ELO_TASK_DF = hard_elo_task_df
|
240 |
-
HARD_ELO_BENCH_DF = hard_elo_bench_df
|
241 |
|
242 |
-
|
243 |
-
SOLVE_REPO,
|
244 |
-
"default",
|
245 |
-
split="complete",
|
246 |
-
cache_dir=HF_HOME,
|
247 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
248 |
-
verification_mode="no_checks"
|
249 |
-
).to_pandas()
|
250 |
-
instruct_solve_df = datasets.load_dataset(
|
251 |
-
SOLVE_REPO,
|
252 |
-
"default",
|
253 |
-
split="instruct",
|
254 |
-
cache_dir=HF_HOME,
|
255 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
256 |
-
verification_mode="no_checks"
|
257 |
-
).to_pandas()
|
258 |
-
COMPLETE_SOLVE_DF = complete_solve_df
|
259 |
-
INSTRUCT_SOLVE_DF = instruct_solve_df
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
"default",
|
264 |
-
split="complete",
|
265 |
-
cache_dir=HF_HOME,
|
266 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
267 |
-
verification_mode="no_checks"
|
268 |
-
).to_pandas()
|
269 |
-
hard_instruct_solve_df = datasets.load_dataset(
|
270 |
-
HARD_SOLVE_REPO,
|
271 |
-
"default",
|
272 |
-
split="instruct",
|
273 |
-
cache_dir=HF_HOME,
|
274 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
275 |
-
verification_mode="no_checks"
|
276 |
-
).to_pandas()
|
277 |
-
HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df
|
278 |
-
HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
else:
|
283 |
-
LEADERBOARD_DF = leaderboard_initial_df
|
284 |
-
# HARD_LEADERBOARD_DF = hard_leaderboard_initial_df
|
285 |
-
ELO_TASK_DF = elo_task_df
|
286 |
-
# ELO_BENCH_DF = elo_bench_df
|
287 |
-
# HARD_ELO_TASK_DF = hard_elo_task_df
|
288 |
-
HARD_ELO_BENCH_DF = hard_elo_bench_df
|
289 |
-
COMPLETE_SOLVE_DF = complete_solve_df
|
290 |
-
# INSTRUCT_SOLVE_DF = instruct_solve_df
|
291 |
-
# HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df
|
292 |
-
HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
global
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
global INSTRUCT_SOLVE_DF
|
310 |
-
global HARD_COMPLETE_SOLVE_DF
|
311 |
-
global HARD_INSTRUCT_SOLVE_DF
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)
|
317 |
-
# return (HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)
|
318 |
-
|
319 |
-
# Initialize VoteManager
|
320 |
-
# vote_manager = VoteManager(VOTES_PATH, EVAL_REQUESTS_PATH, VOTES_REPO)
|
321 |
-
|
322 |
-
|
323 |
-
# Schedule the upload_votes method to run every 15 minutes
|
324 |
-
# schedule.every(15).minutes.do(vote_manager.upload_votes)
|
325 |
-
|
326 |
-
# Start the scheduler in a separate thread
|
327 |
-
# scheduler_thread = Thread(target=run_scheduler, args=(vote_manager,), daemon=True)
|
328 |
-
# scheduler_thread.start()
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
#
|
337 |
-
|
338 |
-
# Data processing for plots now only on demand in the respective Gradio tab
|
339 |
-
# def load_and_create_plots():
|
340 |
-
# plot_df = create_plot_df(create_scores_df(LEADERBOARD_DF))
|
341 |
-
# return plot_df
|
342 |
-
|
343 |
-
# Function to check if a user is logged in
|
344 |
-
def check_login(profile: gr.OAuthProfile | None) -> bool:
|
345 |
-
if profile is None:
|
346 |
-
return False
|
347 |
-
return True
|
348 |
-
|
349 |
-
def init_leaderboard(dataframe):
|
350 |
-
if dataframe is None or dataframe.empty:
|
351 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
352 |
-
return Leaderboard(
|
353 |
-
value=dataframe,
|
354 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
355 |
-
select_columns=SelectColumns(
|
356 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
357 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
|
358 |
-
label="Select Columns to Display:",
|
359 |
-
),
|
360 |
-
search_columns=[AutoEvalColumn.model.name],
|
361 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
362 |
-
filter_columns=[
|
363 |
-
ColumnFilter(AutoEvalColumn.type.name, type="checkboxgroup", label="Model Types"),
|
364 |
-
ColumnFilter(AutoEvalColumn.openness.name, type="checkboxgroup", label="Openness"),
|
365 |
-
ColumnFilter(AutoEvalColumn.size_range.name, type="dropdown", label="Model Size"),
|
366 |
-
ColumnFilter(AutoEvalColumn.moe.name, type="checkboxgroup", label="Model Architecture"),
|
367 |
-
],
|
368 |
-
bool_checkboxgroup_label="Hide models",
|
369 |
-
interactive=False,
|
370 |
-
)
|
371 |
-
|
372 |
-
|
373 |
-
def init_others(dataframe):
|
374 |
-
if dataframe is None or dataframe.empty:
|
375 |
-
raise ValueError("Gradio DataFrame is empty or None.")
|
376 |
-
return gr.Dataframe(dataframe, visible=False)
|
377 |
-
|
378 |
-
main_block = gr.Blocks(css=custom_css)
|
379 |
-
with main_block as demo:
|
380 |
-
with gr.Row(elem_id="header-row"):
|
381 |
-
gr.HTML(TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>")
|
382 |
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
hard_leaderboard = init_leaderboard(HARD_LEADERBOARD_DF)
|
388 |
-
gr.Markdown(
|
389 |
-
"""
|
390 |
-
**Notes:**
|
391 |
-
- For the efficiency reasons, we only display the Hard Set leaderboard.
|
392 |
-
- _Hard Set_ vs _Full Set_:
|
393 |
-
- <u>Hard Set</u>: A subset of ~150 BigCodeBench tasks which is more user-facing and challenging.
|
394 |
-
- <u>Full Set</u>: The full set of 1140 BigCodeBench tasks.
|
395 |
-
- _Complete_ vs _Instruct_:
|
396 |
-
- <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This split tests if the models are good at coding.
|
397 |
-
- <u>Instruct</u> (🔥Vibe Check🔥): Code Generation based on the (less verbose) NL-oriented instructions. This split tests if the models are really capable enough to understand human intents to code.
|
398 |
-
- `Complete` and `Instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark splits.
|
399 |
-
- `Average` is the average of `Complete` and `Instruct` when both are available.
|
400 |
-
- `Elo Rating` represents the task-level Bootstrap of Maximum Likelihood Elo rating on the Complete + Instruct splits. The rating starts from 1000 and is bootstrapped 500 times. We only consider the models having both `Complete` and `Instruct` scores.
|
401 |
-
- `#Act Params (B)` is the number of activated model parameters during inference.
|
402 |
-
- Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
|
403 |
-
- For more details check the 📝 About section.
|
404 |
-
""",
|
405 |
-
elem_classes="markdown-text",
|
406 |
-
)
|
407 |
-
|
408 |
-
with gr.TabItem("📊 Elo Rating", id="hard_elo"):
|
409 |
-
with gr.Column():
|
410 |
-
with gr.Group():
|
411 |
-
gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
|
412 |
-
hard_task_elo_map = gr.Plot()
|
413 |
-
hard_elo_task_gr = init_others(HARD_ELO_TASK_DF)
|
414 |
-
demo.load(plot_elo_mle, [hard_elo_task_gr],
|
415 |
-
hard_task_elo_map)
|
416 |
-
with gr.Group():
|
417 |
-
gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
|
418 |
-
hard_bench_elo_map = gr.Plot()
|
419 |
-
hard_elo_bench_gr = init_others(HARD_ELO_BENCH_DF)
|
420 |
-
demo.load(plot_elo_mle, [hard_elo_bench_gr],
|
421 |
-
hard_bench_elo_map)
|
422 |
-
|
423 |
-
with gr.TabItem("🧩 Solve Rate", id="hard_solve"):
|
424 |
-
with gr.Column():
|
425 |
-
hard_complete_map = gr.Plot()
|
426 |
-
hard_complete_solve_gr = init_others(HARD_COMPLETE_SOLVE_DF)
|
427 |
-
demo.load(plot_solve_rate, [hard_complete_solve_gr,
|
428 |
-
gr.Textbox("Complete", visible=False),
|
429 |
-
gr.Number(10, visible=False),
|
430 |
-
gr.Number(16, visible=False),
|
431 |
-
], hard_complete_map)
|
432 |
-
hard_instruct_map = gr.Plot()
|
433 |
-
hard_instruct_solve_gr = init_others(HARD_INSTRUCT_SOLVE_DF)
|
434 |
-
demo.load(plot_solve_rate, [hard_instruct_solve_gr,
|
435 |
-
gr.Textbox("Instruct", visible=False),
|
436 |
-
gr.Number(10, visible=False),
|
437 |
-
gr.Number(16, visible=False),
|
438 |
-
], hard_instruct_map)
|
439 |
-
with gr.Tab("🎯 Full Set") as full_tabs:
|
440 |
-
with gr.TabItem("🏅 Benchmark", elem_id="llm-benchmark-tab-table", id="full_bench"):
|
441 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
442 |
-
gr.Markdown(
|
443 |
-
"""
|
444 |
-
**Notes:**
|
445 |
-
- _Complete_ vs _Instruct_:
|
446 |
-
- <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding.
|
447 |
-
- <u>Instruct</u> (🔥Vibe Check🔥): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code.
|
448 |
-
- `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants.
|
449 |
-
- `elo_mle` represents the task-level Bootstrap of Maximum Likelihood Elo rating on the BigCodeBench-Complete split. The rating starts from 1000 and is bootstrapped 500 times.
|
450 |
-
- `size` is the amount of activated model weight during inference.
|
451 |
-
- Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
|
452 |
-
- For more details check the 📝 About section.
|
453 |
-
""",
|
454 |
-
elem_classes="markdown-text",
|
455 |
-
)
|
456 |
-
|
457 |
-
with gr.TabItem("📊 Elo Rating", id="full_elo"):
|
458 |
-
with gr.Column():
|
459 |
-
with gr.Group():
|
460 |
-
|
461 |
-
gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
|
462 |
-
task_elo_map = gr.Plot()
|
463 |
-
elo_task_gr = init_others(ELO_TASK_DF)
|
464 |
-
demo.load(plot_elo_mle, [elo_task_gr], task_elo_map)
|
465 |
-
with gr.Group():
|
466 |
-
gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
|
467 |
-
bench_elo_map = gr.Plot()
|
468 |
-
elo_bench_gr = init_others(ELO_BENCH_DF)
|
469 |
-
demo.load(plot_elo_mle, [elo_bench_gr], bench_elo_map)
|
470 |
-
|
471 |
-
with gr.TabItem("🧩 Solve Rate", id="full_solve"):
|
472 |
-
with gr.Column():
|
473 |
-
complete_map = gr.Plot()
|
474 |
-
complete_solve_gr = init_others(COMPLETE_SOLVE_DF)
|
475 |
-
demo.load(plot_solve_rate, [complete_solve_gr,
|
476 |
-
gr.Textbox("Complete", visible=False),
|
477 |
-
], complete_map)
|
478 |
-
instruct_map = gr.Plot()
|
479 |
-
instruct_solve_gr = init_others(INSTRUCT_SOLVE_DF)
|
480 |
-
demo.load(plot_solve_rate, [instruct_solve_gr,
|
481 |
-
gr.Textbox("Instruct", visible=False),
|
482 |
-
], instruct_map)
|
483 |
-
with gr.TabItem("📝 About", id=3):
|
484 |
-
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
|
485 |
-
with gr.TabItem("🔎 Data Viewer", id="viewer"):
|
486 |
-
search_input = gr.Textbox(label="Search by keyword")
|
487 |
-
count_output = gr.Number(label="Number of filtered items")
|
488 |
-
index_slider = gr.Slider(minimum=0, maximum=len(DATA)-1, step=1, label="Select Index")
|
489 |
-
# show_solution = gr.Checkbox(label="Show Solution")
|
490 |
-
show_test = gr.Checkbox(label="Show Test Cases")
|
491 |
-
update_button = gr.Button("Update")
|
492 |
-
|
493 |
-
task_id_output = gr.Textbox(label="Task ID")
|
494 |
-
code_completion = gr.Code(language="python", label="Code Completion")
|
495 |
-
nl_instruction = gr.Code(language="markdown", label="Natural Language Instruction")
|
496 |
-
# solution = gr.Code(language="python", label="Solution")
|
497 |
-
test_cases = gr.Code(language="python", label="Test Cases")
|
498 |
-
|
499 |
-
update_button.click(
|
500 |
-
update_display,
|
501 |
-
inputs=[search_input, index_slider, show_test],
|
502 |
-
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
|
503 |
-
)
|
504 |
-
|
505 |
-
# Initial load
|
506 |
-
demo.load(
|
507 |
-
update_display,
|
508 |
-
inputs=[search_input, index_slider, show_test],
|
509 |
-
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
|
510 |
-
)
|
511 |
-
|
512 |
-
with gr.TabItem("🚀 Request", id=4):
|
513 |
-
gr.Markdown(SUBMISSION_TEXT_3)
|
514 |
-
|
515 |
-
with gr.TabItem(" Execute", id=5):
|
516 |
-
gr.Markdown("# BigCodeBench Evaluator")
|
517 |
-
|
518 |
-
with gr.Row():
|
519 |
-
jsonl_file = gr.File(label="Upload JSONL file", file_types=[".jsonl"])
|
520 |
-
split = gr.Dropdown(choices=["complete", "instruct"], label="Split", value="complete")
|
521 |
-
subset = gr.Dropdown(choices=["hard"], label="Subset", value="hard")
|
522 |
-
|
523 |
-
with gr.Row():
|
524 |
-
parallel = gr.Number(label="Parallel (optional)", precision=0)
|
525 |
-
min_time_limit = gr.Number(label="Min Time Limit", value=1, precision=1)
|
526 |
-
max_as_limit = gr.Number(label="Max AS Limit", value=25*1024, precision=0)
|
527 |
-
|
528 |
-
with gr.Row():
|
529 |
-
max_data_limit = gr.Number(label="Max Data Limit", value=25*1024, precision=0)
|
530 |
-
max_stack_limit = gr.Number(label="Max Stack Limit", value=10, precision=0)
|
531 |
-
check_gt_only = gr.Checkbox(label="Check GT Only")
|
532 |
-
no_gt = gr.Checkbox(label="No GT")
|
533 |
-
|
534 |
-
command_output = gr.Textbox(label="Command", value=default_command, interactive=False)
|
535 |
-
with gr.Row():
|
536 |
-
submit_btn = gr.Button("Run Evaluation")
|
537 |
-
download_btn = gr.DownloadButton(label="Download Result")
|
538 |
-
log_output = gr.Textbox(label="Execution Logs", lines=20)
|
539 |
-
|
540 |
-
input_components = [
|
541 |
-
jsonl_file, split, subset, parallel,
|
542 |
-
min_time_limit, max_as_limit, max_data_limit, max_stack_limit,
|
543 |
-
check_gt_only, no_gt
|
544 |
-
]
|
545 |
-
|
546 |
-
for component in input_components:
|
547 |
-
component.change(generate_command, inputs=input_components, outputs=command_output)
|
548 |
-
|
549 |
-
|
550 |
-
def start_evaluation(command, jsonl_file, subset, split):
|
551 |
-
extra = subset + "_" if subset != "full" else ""
|
552 |
-
if jsonl_file is not None:
|
553 |
-
result_path = os.path.basename(jsonl_file.name).replace(".jsonl", f"_{extra}eval_results.json")
|
554 |
-
else:
|
555 |
-
result_path = None
|
556 |
-
|
557 |
-
for log in stream_logs(command, jsonl_file):
|
558 |
-
if jsonl_file is not None:
|
559 |
-
yield log, gr.update(value=result_path, label=result_path), gr.update()
|
560 |
-
else:
|
561 |
-
yield log, gr.update(), gr.update()
|
562 |
-
is_running = False
|
563 |
-
result_file = find_result_file()
|
564 |
-
if result_file:
|
565 |
-
return gr.update(label="Evaluation completed. Result file found."), gr.update(value=result_file)
|
566 |
-
# gr.Button(visible=False)#,
|
567 |
-
# gr.DownloadButton(label="Download Result", value=result_file, visible=True))
|
568 |
-
else:
|
569 |
-
return gr.update(label="Evaluation completed. No result file found."), gr.update(value=result_path)
|
570 |
-
# gr.Button("Run Evaluation", visible=True),
|
571 |
-
# gr.DownloadButton(visible=False))
|
572 |
-
submit_btn.click(start_evaluation,
|
573 |
-
inputs=[command_output, jsonl_file, subset, split],
|
574 |
-
outputs=[log_output, download_btn])
|
575 |
|
576 |
with gr.Row():
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
if IS_EPHEMERAL_SPACE:
|
603 |
-
print("In an ephemeral Space: Space CI disabled.")
|
604 |
-
return WebhooksServer(ui=main_block)
|
605 |
-
|
606 |
-
card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space")
|
607 |
-
config = card.data.get("space_ci", {})
|
608 |
-
print(f"Enabling Space CI with config from README: {config}")
|
609 |
-
|
610 |
-
return configure_space_ci(
|
611 |
-
blocks=ui,
|
612 |
-
trusted_authors=config.get("trusted_authors"),
|
613 |
-
private=config.get("private", "auto"),
|
614 |
-
variables=config.get("variables", "auto"),
|
615 |
-
secrets=config.get("secrets"),
|
616 |
-
hardware=config.get("hardware"),
|
617 |
-
storage=config.get("storage"),
|
618 |
-
)
|
619 |
-
|
620 |
-
# Create webhooks server (with CI url if in Space and not ephemeral)
|
621 |
-
webhooks_server = enable_space_ci_and_return_server(ui=main_block)
|
622 |
-
|
623 |
-
# Add webhooks
|
624 |
-
@webhooks_server.add_webhook
|
625 |
-
def update_leaderboard(payload: WebhookPayload) -> None:
|
626 |
-
"""Redownloads the leaderboard dataset each time it updates"""
|
627 |
-
if payload.repo.type == "dataset" and payload.event.action == "update":
|
628 |
-
global NEW_DATA_ON_LEADERBOARD
|
629 |
-
if NEW_DATA_ON_LEADERBOARD:
|
630 |
-
return
|
631 |
-
NEW_DATA_ON_LEADERBOARD = True
|
632 |
-
|
633 |
-
for repo in [RESULT_REPO, HARD_RESULT_REPO, ELO_REPO, HARD_ELO_REPO, SOLVE_REPO, HARD_SOLVE_REPO]:
|
634 |
-
datasets.load_dataset(
|
635 |
-
repo,
|
636 |
-
"default",
|
637 |
-
cache_dir=HF_HOME,
|
638 |
-
download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD,
|
639 |
-
verification_mode="no_checks"
|
640 |
-
)
|
641 |
-
|
642 |
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
import os
|
5 |
+
import threading
|
6 |
import time
|
7 |
+
import uuid
|
8 |
+
import glob
|
9 |
+
import shutil
|
10 |
+
from pathlib import Path
|
|
|
|
|
11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
12 |
|
13 |
+
default_command = "bigcodebench.evaluate"
|
14 |
+
is_running = False
|
15 |
+
lock = threading.Lock()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def generate_command(
|
18 |
+
jsonl_file, split, subset, parallel,
|
19 |
+
min_time_limit, max_as_limit, max_data_limit, max_stack_limit,
|
20 |
+
check_gt_only, no_gt
|
21 |
+
):
|
22 |
+
command = [default_command]
|
23 |
|
24 |
+
if jsonl_file is not None:
|
25 |
+
# Copy the uploaded file to the current directory
|
26 |
+
local_filename = os.path.basename(jsonl_file.name)
|
27 |
+
shutil.copy(jsonl_file.name, local_filename)
|
28 |
+
command.extend(["--samples", local_filename])
|
29 |
|
30 |
+
command.extend(["--split", split, "--subset", subset])
|
|
|
31 |
|
32 |
+
if parallel is not None and parallel != 0:
|
33 |
+
command.extend(["--parallel", str(int(parallel))])
|
|
|
|
|
|
|
34 |
|
35 |
+
command.extend([
|
36 |
+
"--min-time-limit", str(min_time_limit),
|
37 |
+
"--max-as-limit", str(int(max_as_limit)),
|
38 |
+
"--max-data-limit", str(int(max_data_limit)),
|
39 |
+
"--max-stack-limit", str(int(max_stack_limit))
|
40 |
+
])
|
41 |
+
|
42 |
+
if check_gt_only:
|
43 |
+
command.append("--check-gt-only")
|
44 |
+
|
45 |
+
if no_gt:
|
46 |
+
command.append("--no-gt")
|
47 |
+
|
48 |
+
return " ".join(command)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
+
def cleanup_previous_files(jsonl_file):
|
52 |
+
if jsonl_file is not None:
|
53 |
+
file_list = ['Dockerfile', 'app.py', 'README.md', os.path.basename(jsonl_file.name), "__pycache__"]
|
54 |
+
else:
|
55 |
+
file_list = ['Dockerfile', 'app.py', 'README.md', "__pycache__"]
|
56 |
+
for file in glob.glob("*"):
|
57 |
try:
|
58 |
+
if file not in file_list:
|
59 |
+
os.remove(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
+
print(f"Error during cleanup of {file}: {e}")
|
62 |
+
|
63 |
+
def find_result_file():
|
64 |
+
json_files = glob.glob("*.json")
|
65 |
+
if json_files:
|
66 |
+
return max(json_files, key=os.path.getmtime)
|
67 |
+
return None
|
68 |
+
|
69 |
+
def run_bigcodebench(command):
|
70 |
+
global is_running
|
71 |
+
with lock:
|
72 |
+
if is_running:
|
73 |
+
yield "A command is already running. Please wait for it to finish.\n"
|
74 |
+
return
|
75 |
+
is_running = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
try:
|
78 |
+
yield f"Executing command: {command}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
for line in process.stdout:
|
83 |
+
yield line
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# process.wait()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
if process.returncode != 0:
|
88 |
+
yield f"Error: Command exited with status {process.returncode}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
yield "Evaluation completed.\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
result_file = find_result_file()
|
93 |
+
if result_file:
|
94 |
+
yield f"Result file found: {result_file}\n"
|
95 |
+
else:
|
96 |
+
yield "No result file found.\n"
|
97 |
+
finally:
|
98 |
+
with lock:
|
99 |
+
is_running = False
|
100 |
+
|
101 |
+
def stream_logs(command, jsonl_file=None):
|
102 |
+
global is_running
|
103 |
+
|
104 |
+
if is_running:
|
105 |
+
yield "A command is already running. Please wait for it to finish.\n"
|
106 |
+
return
|
|
|
|
|
|
|
107 |
|
108 |
+
cleanup_previous_files(jsonl_file)
|
109 |
+
yield "Cleaned up previous files.\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
log_content = []
|
112 |
+
for log_line in run_bigcodebench(command):
|
113 |
+
log_content.append(log_line)
|
114 |
+
yield "".join(log_content)
|
115 |
+
|
116 |
+
with gr.Blocks() as demo:
|
117 |
+
gr.Markdown("# BigCodeBench Evaluator")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
with gr.Row():
|
120 |
+
jsonl_file = gr.File(label="Upload JSONL file", file_types=[".jsonl"])
|
121 |
+
split = gr.Dropdown(choices=["complete", "instruct"], label="Split", value="complete")
|
122 |
+
subset = gr.Dropdown(choices=["hard"], label="Subset", value="hard")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
with gr.Row():
|
125 |
+
parallel = gr.Number(label="Parallel (optional)", precision=0)
|
126 |
+
min_time_limit = gr.Number(label="Min Time Limit", value=1, precision=1)
|
127 |
+
max_as_limit = gr.Number(label="Max AS Limit", value=25*1024, precision=0)
|
128 |
+
|
129 |
+
with gr.Row():
|
130 |
+
max_data_limit = gr.Number(label="Max Data Limit", value=25*1024, precision=0)
|
131 |
+
max_stack_limit = gr.Number(label="Max Stack Limit", value=10, precision=0)
|
132 |
+
check_gt_only = gr.Checkbox(label="Check GT Only")
|
133 |
+
no_gt = gr.Checkbox(label="No GT")
|
134 |
+
|
135 |
+
command_output = gr.Textbox(label="Command", value=default_command, interactive=False)
|
136 |
+
with gr.Row():
|
137 |
+
submit_btn = gr.Button("Run Evaluation")
|
138 |
+
download_btn = gr.DownloadButton(label="Download Result")
|
139 |
+
log_output = gr.Textbox(label="Execution Logs", lines=20)
|
140 |
+
|
141 |
+
input_components = [
|
142 |
+
jsonl_file, split, subset, parallel,
|
143 |
+
min_time_limit, max_as_limit, max_data_limit, max_stack_limit,
|
144 |
+
check_gt_only, no_gt
|
145 |
+
]
|
146 |
+
|
147 |
+
for component in input_components:
|
148 |
+
component.change(generate_command, inputs=input_components, outputs=command_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
|
151 |
+
def start_evaluation(command, jsonl_file, subset, split):
|
152 |
+
extra = subset + "_" if subset != "full" else ""
|
153 |
+
if jsonl_file is not None:
|
154 |
+
result_path = os.path.basename(jsonl_file.name).replace(".jsonl", f"_{extra}eval_results.json")
|
155 |
+
else:
|
156 |
+
result_path = None
|
157 |
+
|
158 |
+
for log in stream_logs(command, jsonl_file):
|
159 |
+
if jsonl_file is not None:
|
160 |
+
yield log, gr.update(value=result_path, label=result_path), gr.update()
|
161 |
+
else:
|
162 |
+
yield log, gr.update(), gr.update()
|
163 |
+
is_running = False
|
164 |
+
result_file = find_result_file()
|
165 |
+
if result_file:
|
166 |
+
return gr.update(label="Evaluation completed. Result file found."), gr.update(value=result_file)
|
167 |
+
# gr.Button(visible=False)#,
|
168 |
+
# gr.DownloadButton(label="Download Result", value=result_file, visible=True))
|
169 |
+
else:
|
170 |
+
return gr.update(label="Evaluation completed. No result file found."), gr.update(value=result_path)
|
171 |
+
# gr.Button("Run Evaluation", visible=True),
|
172 |
+
# gr.DownloadButton(visible=False))
|
173 |
+
submit_btn.click(start_evaluation,
|
174 |
+
inputs=[command_output, jsonl_file, subset, split],
|
175 |
+
outputs=[log_output, download_btn])
|
176 |
+
|
177 |
+
demo.queue(max_size=300).launch(share=True, server_name="0.0.0.0", server_port=7860)
|
178 |
+
scheduler = BackgroundScheduler()
|