import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset import os os.environ["CUDA_VISIBLE_DEVICES"] = "6" # SET the GPUs you want to use import csv from transformers import WhisperProcessor, WhisperForConditionalGeneration # device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = WhisperForConditionalGeneration.from_pretrained(model_id) processor = WhisperProcessor.from_pretrained(model_id) mp3_folder = "./extra_epi_wav/" # Get a list of all the mp3 files in the folder mp3_files = [file for file in os.listdir(mp3_folder) if file.endswith(".wav")] # Create a CSV file to store the transcripts csv_filename = "transcripts_with_lang.csv" with open(csv_filename, mode='w', newline='', encoding='utf-8') as csv_file: fieldnames = ['File Name', 'Transcript', 'lang'] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) # Write the header to the CSV file writer.writeheader() # Process each mp3 file and write the results to the CSV file processed_files_counter = 0 for mp3_file in mp3_files: mp3_path = os.path.join(mp3_folder, mp3_file) result = pipe(mp3_path) print(result) transcript = result["text"] # p processed_files_counter += 1 # Check progress after every 10 files if processed_files_counter % 10 == 0: print(f"{processed_files_counter} files processed.") # Write the file name and transcript to the CSV file writer.writerow({'File Name': mp3_file, 'Transcript': transcript}) print(f"Transcripts saved to {csv_filename}")