bhaskartripathi commited on
Commit
efee337
·
1 Parent(s): 9efa4bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -113
app.py CHANGED
@@ -2,7 +2,6 @@ import urllib.request
2
  import fitz
3
  import re
4
  import numpy as np
5
- import tensorflow_hub as hub
6
  import openai
7
  import gradio as gr
8
  import os
@@ -11,13 +10,11 @@ from sklearn.neighbors import NearestNeighbors
11
  def download_pdf(url, output_path):
12
  urllib.request.urlretrieve(url, output_path)
13
 
14
-
15
  def preprocess(text):
16
  text = text.replace('\n', ' ')
17
  text = re.sub('\s+', ' ', text)
18
  return text
19
 
20
-
21
  def pdf_to_text(path, start_page=1, end_page=None):
22
  doc = fitz.open(path)
23
  total_pages = doc.page_count
@@ -35,12 +32,11 @@ def pdf_to_text(path, start_page=1, end_page=None):
35
  doc.close()
36
  return text_list
37
 
38
-
39
  def text_to_chunks(texts, word_length=150, start_page=1):
40
  text_toks = [t.split(' ') for t in texts]
41
  page_nums = []
42
  chunks = []
43
-
44
  for idx, words in enumerate(text_toks):
45
  for i in range(0, len(words), word_length):
46
  chunk = words[i:i+word_length]
@@ -53,72 +49,63 @@ def text_to_chunks(texts, word_length=150, start_page=1):
53
  chunks.append(chunk)
54
  return chunks
55
 
56
-
57
  class SemanticSearch:
58
-
59
- def __init__(self):
60
- self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
61
  self.fitted = False
62
-
63
-
64
- def fit(self, data, batch=1000, n_neighbors=5):
65
  self.data = data
66
- self.embeddings = self.get_text_embedding(data, batch=batch)
67
  n_neighbors = min(n_neighbors, len(self.embeddings))
68
  self.nn = NearestNeighbors(n_neighbors=n_neighbors)
69
  self.nn.fit(self.embeddings)
70
  self.fitted = True
71
-
72
-
73
  def __call__(self, text, return_data=True):
74
- inp_emb = self.use([text])
75
  neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
76
-
77
  if return_data:
78
  return [self.data[i] for i in neighbors]
79
  else:
80
  return neighbors
81
-
82
-
83
- def get_text_embedding(self, texts, batch=1000):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  embeddings = []
85
- for i in range(0, len(texts), batch):
86
- text_batch = texts[i:(i+batch)]
87
- emb_batch = self.use(text_batch)
88
- embeddings.append(emb_batch)
89
- embeddings = np.vstack(embeddings)
 
90
  return embeddings
91
 
92
-
93
-
94
- #def load_recommender(path, start_page=1):
95
- # global recommender
96
- # texts = pdf_to_text(path, start_page=start_page)
97
- # chunks = text_to_chunks(texts, start_page=start_page)
98
- # recommender.fit(chunks)
99
- # return 'Corpus Loaded.'
100
-
101
- # The modified function generates embeddings based on PDF file name and page number and checks if the embeddings file exists before loading or generating it.
102
- def load_recommender(path, start_page=1):
103
  global recommender
104
- pdf_file = os.path.basename(path)
105
- embeddings_file = f"{pdf_file}_{start_page}.npy"
106
-
107
- if os.path.isfile(embeddings_file):
108
- embeddings = np.load(embeddings_file)
109
- recommender.embeddings = embeddings
110
- recommender.fitted = True
111
- return "Embeddings loaded from file"
112
-
113
  texts = pdf_to_text(path, start_page=start_page)
114
- chunks = text_to_chunks(texts, start_page=start_page)
 
115
  recommender.fit(chunks)
116
- np.save(embeddings_file, recommender.embeddings)
117
  return 'Corpus Loaded.'
118
 
119
-
120
-
121
- def generate_text(openAI_key,prompt, engine="text-davinci-003"):
122
  openai.api_key = openAI_key
123
  completions = openai.Completion.create(
124
  engine=engine,
@@ -130,30 +117,14 @@ def generate_text(openAI_key,prompt, engine="text-davinci-003"):
130
  )
131
  message = completions.choices[0].text
132
  return message
133
-
134
- def generate_text2(openAI_key, prompt, engine="gpt-3.5-turbo-0301"):
135
- openai.api_key = openAI_key
136
- messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
137
- {'role': 'user', 'content': prompt}]
138
-
139
- completions = openai.ChatCompletion.create(
140
- model=engine,
141
- messages=messages,
142
- max_tokens=512,
143
- n=1,
144
- stop=None,
145
- temperature=0.7,
146
- )
147
- message = completions.choices[0].message['content']
148
- return message
149
 
150
- def generate_answer(question,openAI_key):
151
  topn_chunks = recommender(question)
152
  prompt = ""
153
  prompt += 'search results:\n\n'
154
  for c in topn_chunks:
155
  prompt += c + '\n\n'
156
-
157
  prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
158
  "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
159
  "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
@@ -162,45 +133,42 @@ def generate_answer(question,openAI_key):
162
  "If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
163
  "search results which has nothing to do with the question. Only answer what is asked. The "\
164
  "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
165
-
166
  prompt += f"Query: {question}\nAnswer:"
167
- answer = generate_text(openAI_key, prompt,"text-davinci-003")
168
  return answer
169
 
170
-
171
- def question_answer(url, file, question,openAI_key):
172
- if openAI_key.strip()=='':
173
  return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
174
  if url.strip() == '' and file == None:
175
- return '[ERROR]: Both URL and PDF is empty. Provide atleast one.'
176
-
177
  if url.strip() != '' and file != None:
178
- return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).'
179
 
180
  if url.strip() != '':
181
  glob_url = url
182
  download_pdf(glob_url, 'corpus.pdf')
183
- load_recommender('corpus.pdf')
184
 
185
  else:
186
  old_file_name = file.name
187
  file_name = file.name
188
  file_name = file_name[:-12] + file_name[-4:]
189
  os.rename(old_file_name, file_name)
190
- load_recommender(file_name)
191
 
192
  if question.strip() == '':
193
  return '[ERROR]: Question field is empty'
194
 
195
- return generate_answer(question,openAI_key)
196
-
197
 
198
- recommender = SemanticSearch()
199
 
 
200
  title = 'PDF GPT'
201
- description = """ What is PDF GPT ?
202
- 1. The problem is that Open AI has a 4K token limit and cannot take an entire PDF file as input. Additionally, it sometimes returns irrelevant responses due to poor embeddings. ChatGPT cannot directly talk to external data. The solution is PDF GPT, which allows you to chat with an uploaded PDF file using GPT functionalities. The application breaks the document into smaller chunks and generates embeddings using a powerful Deep Averaging Network Encoder. A semantic search is performed on your query, and the top relevant chunks are used to generate a response.
203
- 2. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly. The Responses are much better than the naive responses by Open AI."""
204
 
205
  with gr.Blocks() as demo:
206
 
@@ -208,7 +176,7 @@ with gr.Blocks() as demo:
208
  gr.Markdown(description)
209
 
210
  with gr.Row():
211
-
212
  with gr.Group():
213
  gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
214
  openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
@@ -222,32 +190,6 @@ with gr.Blocks() as demo:
222
  with gr.Group():
223
  answer = gr.Textbox(label='The answer to your question is :')
224
 
225
- btn.click(question_answer, inputs=[url, file, question,openAI_key], outputs=[answer])
226
- #openai.api_key = os.getenv('Your_Key_Here')
227
- demo.launch()
228
-
229
-
230
- # import streamlit as st
231
-
232
- # #Define the app layout
233
- # st.markdown(f'<center><h1>{title}</h1></center>', unsafe_allow_html=True)
234
- # st.markdown(description)
235
 
236
- # col1, col2 = st.columns(2)
237
-
238
- # # Define the inputs in the first column
239
- # with col1:
240
- # url = st.text_input('URL')
241
- # st.markdown("<center><h6>or<h6></center>", unsafe_allow_html=True)
242
- # file = st.file_uploader('PDF', type='pdf')
243
- # question = st.text_input('question')
244
- # btn = st.button('Submit')
245
-
246
- # # Define the output in the second column
247
- # with col2:
248
- # answer = st.text_input('answer')
249
-
250
- # # Define the button action
251
- # if btn:
252
- # answer_value = question_answer(url, file, question)
253
- # answer.value = answer_value
 
2
  import fitz
3
  import re
4
  import numpy as np
 
5
  import openai
6
  import gradio as gr
7
  import os
 
10
  def download_pdf(url, output_path):
11
  urllib.request.urlretrieve(url, output_path)
12
 
 
13
  def preprocess(text):
14
  text = text.replace('\n', ' ')
15
  text = re.sub('\s+', ' ', text)
16
  return text
17
 
 
18
  def pdf_to_text(path, start_page=1, end_page=None):
19
  doc = fitz.open(path)
20
  total_pages = doc.page_count
 
32
  doc.close()
33
  return text_list
34
 
 
35
  def text_to_chunks(texts, word_length=150, start_page=1):
36
  text_toks = [t.split(' ') for t in texts]
37
  page_nums = []
38
  chunks = []
39
+
40
  for idx, words in enumerate(text_toks):
41
  for i in range(0, len(words), word_length):
42
  chunk = words[i:i+word_length]
 
49
  chunks.append(chunk)
50
  return chunks
51
 
 
52
  class SemanticSearch:
53
+
54
+ def __init__(self, openAI_key):
55
+ self.openAI_key = openAI_key
56
  self.fitted = False
57
+
58
+ def fit(self, data, n_neighbors=5):
 
59
  self.data = data
60
+ self.embeddings = self.get_text_embedding(data)
61
  n_neighbors = min(n_neighbors, len(self.embeddings))
62
  self.nn = NearestNeighbors(n_neighbors=n_neighbors)
63
  self.nn.fit(self.embeddings)
64
  self.fitted = True
65
+
 
66
  def __call__(self, text, return_data=True):
67
+ inp_emb = self.get_text_embedding([text])
68
  neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
69
+
70
  if return_data:
71
  return [self.data[i] for i in neighbors]
72
  else:
73
  return neighbors
74
+
75
+ def get_text_embedding(self, texts):
76
+ prompt = "Embed the following texts:"
77
+ for text in texts:
78
+ prompt += f"\n\n{text}"
79
+
80
+ openai.api_key = self.openAI_key
81
+ completions = openai.Completion.create(
82
+ engine="text-davinci-003",
83
+ prompt=prompt,
84
+ max_tokens=len(texts) * 128,
85
+ n=1,
86
+ stop=None,
87
+ temperature=0.5,
88
+ )
89
+
90
+ message = completions.choices[0].text
91
  embeddings = []
92
+ for emb_str in message.split("\n"):
93
+ emb_str = emb_str.strip()
94
+ if emb_str:
95
+ emb = np.array([float(x) for x in emb_str.split()])
96
+ embeddings.append(emb)
97
+ embeddings = np.array(embeddings)
98
  return embeddings
99
 
100
+ def load_recommender(path, openAI_key, start_page=1):
 
 
 
 
 
 
 
 
 
 
101
  global recommender
 
 
 
 
 
 
 
 
 
102
  texts = pdf_to_text(path, start_page=start_page)
103
+ chunks = text_to_chunks(texts, start_page=start_page
104
+ recommender = SemanticSearch(openAI_key)
105
  recommender.fit(chunks)
 
106
  return 'Corpus Loaded.'
107
 
108
+ def generate_text(openAI_key, prompt, engine="text-davinci-003"):
 
 
109
  openai.api_key = openAI_key
110
  completions = openai.Completion.create(
111
  engine=engine,
 
117
  )
118
  message = completions.choices[0].text
119
  return message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
+ def generate_answer(question, openAI_key):
122
  topn_chunks = recommender(question)
123
  prompt = ""
124
  prompt += 'search results:\n\n'
125
  for c in topn_chunks:
126
  prompt += c + '\n\n'
127
+
128
  prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
129
  "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
130
  "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
 
133
  "If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
134
  "search results which has nothing to do with the question. Only answer what is asked. The "\
135
  "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
136
+
137
  prompt += f"Query: {question}\nAnswer:"
138
+ answer = generate_text(openAI_key, prompt, "text-davinci-003")
139
  return answer
140
 
141
+ def question_answer(url, file, question, openAI_key):
142
+ if openAI_key.strip() == '':
 
143
  return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
144
  if url.strip() == '' and file == None:
145
+ return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
146
+
147
  if url.strip() != '' and file != None:
148
+ return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
149
 
150
  if url.strip() != '':
151
  glob_url = url
152
  download_pdf(glob_url, 'corpus.pdf')
153
+ load_recommender('corpus.pdf', openAI_key)
154
 
155
  else:
156
  old_file_name = file.name
157
  file_name = file.name
158
  file_name = file_name[:-12] + file_name[-4:]
159
  os.rename(old_file_name, file_name)
160
+ load_recommender(file_name, openAI_key)
161
 
162
  if question.strip() == '':
163
  return '[ERROR]: Question field is empty'
164
 
165
+ return generate_answer(question, openAI_key)
 
166
 
167
+ recommender = None
168
 
169
+ # Add your Gradio UI code here
170
  title = 'PDF GPT'
171
+ description = """With PDF GPT, you can chat with your PDF files/books and get precise answers."""
 
 
172
 
173
  with gr.Blocks() as demo:
174
 
 
176
  gr.Markdown(description)
177
 
178
  with gr.Row():
179
+
180
  with gr.Group():
181
  gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
182
  openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
 
190
  with gr.Group():
191
  answer = gr.Textbox(label='The answer to your question is :')
192
 
193
+ btn.click(question_answer, inputs=[url, file, question, openAI_key], outputs=[answer])
 
 
 
 
 
 
 
 
 
194
 
195
+ demo.launch()