bharathj16 commited on
Commit
1ec5b97
·
1 Parent(s): a655929

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -11
app.py CHANGED
@@ -1,16 +1,45 @@
1
- from transformers import ViTImageProcessor, ViTForImageClassification
2
- from PIL import Image
3
  import requests
4
 
5
- url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
 
 
 
 
 
 
 
 
 
6
  image = Image.open(requests.get(url, stream=True).raw)
7
 
8
- processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
9
- model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- inputs = processor(images=image, return_tensors="pt")
12
- outputs = model(**inputs)
13
- logits = outputs.logits
14
- # model predicts one of the 1000 ImageNet classes
15
- predicted_class_idx = logits.argmax(-1).item()
16
- print("Predicted class:", model.config.id2label[predicted_class_idx])
 
 
 
1
  import requests
2
 
3
+ from PIL import Image
4
+ from transformers import AutoProcessor, AutoModelForVision2Seq
5
+
6
+
7
+ model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224")
8
+ processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
9
+
10
+ prompt = "<grounding>An image of"
11
+
12
+ url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png"
13
  image = Image.open(requests.get(url, stream=True).raw)
14
 
15
+ # The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs.
16
+ image.save("new_image.jpg")
17
+ image = Image.open("new_image.jpg")
18
+
19
+ inputs = processor(text=prompt, images=image, return_tensors="pt")
20
+
21
+ generated_ids = model.generate(
22
+ pixel_values=inputs["pixel_values"],
23
+ input_ids=inputs["input_ids"],
24
+ attention_mask=inputs["attention_mask"],
25
+ image_embeds=None,
26
+ image_embeds_position_mask=inputs["image_embeds_position_mask"],
27
+ use_cache=True,
28
+ max_new_tokens=128,
29
+ )
30
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
31
+
32
+ # Specify `cleanup_and_extract=False` in order to see the raw model generation.
33
+ processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False)
34
+
35
+ print(processed_text)
36
+ # `<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.`
37
+
38
+ # By default, the generated text is cleanup and the entities are extracted.
39
+ processed_text, entities = processor.post_process_generation(generated_text)
40
+
41
+ print(processed_text)
42
+ # `An image of a snowman warming himself by a fire.`
43
 
44
+ print(entities)
45
+ # `[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]`