import gradio as gr import tensorflow as tf from PIL import Image import numpy as np labels = ['barrel_jellyfish','blue_jellyfish','compass_jellyfish','lions_mane_jellyfish','mauve_stinger_jellyfish','Moon_jellyfish'] def predict_jellyfish_type(uploaded_file): if uploaded_file is None: return "No file uploaded." model = tf.keras.models.load_model('Jellyfish_transferlearning.keras') # Load the image from the file path with Image.open(uploaded_file) as img: img = img.resize((150, 150)).convert('RGB') # Convert image to RGB img_array = np.array(img) prediction = model.predict(np.expand_dims(img_array, axis=0)) confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} return confidences # Define the Gradio interface iface = gr.Interface( fn=predict_jellyfish_type, # Function to process the input inputs=gr.File(label="Upload File"), # File upload widget outputs="text", # Output type title="Jellyfish Classifier", # Title of the interface examples=["images/barrel_jellyfish.jpg", "images/blue_jellyfish.jpg", "images/compass_jellyfish.jpg", "images/lions_mane_jellyfish.jpg", "images/mauve_stinger_jellyfish.jpg", "images/Moon_jellyfish.jpg"], description="Upload a picture of a Jellyfish (preferably barrel, blue, compass, lions mane, mauve stinger, Moon)" # Description of the interface ) # Launch the interface iface.launch()