Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
labels = ['Ditto','Golbat','Koffing']
|
7 |
+
|
8 |
+
def predict_pokemon_type(uploaded_file):
|
9 |
+
|
10 |
+
if uploaded_file is None:
|
11 |
+
return "No file uploaded."
|
12 |
+
|
13 |
+
model = tf.keras.models.load_model('Ditto-premiumdelux-model_transferlearning.keras')
|
14 |
+
# Load the image from the file path
|
15 |
+
with Image.open(uploaded_file) as img:
|
16 |
+
img = img.resize((150, 150)).convert('RGB') # Convert image to RGB
|
17 |
+
img_array = np.array(img)
|
18 |
+
|
19 |
+
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
20 |
+
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
21 |
+
|
22 |
+
return confidences
|
23 |
+
|
24 |
+
|
25 |
+
# Define the Gradio interface
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=predict_pokemon_type, # Function to process the input
|
28 |
+
inputs=gr.File(label="Upload File"), # File upload widget
|
29 |
+
outputs="text", # Output type
|
30 |
+
title="Pokemon Classifier", # Title of the interface
|
31 |
+
description="Upload a picture of a pokemon (preferably Ditto, Golbat, Koffing)" # Description of the interface
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the interface
|
35 |
+
iface.launch()
|