Spaces:
Running
Running
File size: 15,632 Bytes
b5434b8 2605d55 aa4f694 4184417 2605d55 1d82a0b c1acf68 1d82a0b 4184417 8953d62 1d82a0b 4184417 e9617d4 1d82a0b 4184417 b5434b8 2605d55 3e68ccf 4184417 3e68ccf 57daf6a 3e68ccf 9fcc9ee 4184417 2605d55 3e68ccf 2605d55 aa4f694 f845b93 2605d55 f845b93 2605d55 f845b93 2605d55 f845b93 2605d55 f845b93 cf45a37 17a0c62 cf45a37 16bd9b2 2605d55 f845b93 2605d55 b5434b8 f845b93 2605d55 f845b93 2605d55 813ce6e 69fbdcb 813ce6e 69fbdcb 813ce6e 69fbdcb 4184417 69fbdcb f845b93 4d7e0d8 3e68ccf 4d7e0d8 3e68ccf 44d6df8 3e68ccf 9dea25e 2605d55 4d7e0d8 e55d16a 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 294b6dd 3e68ccf cf45a37 3e68ccf 2605d55 cf45a37 2605d55 cf45a37 2605d55 4184417 69fbdcb cf45a37 69fbdcb 528a9bd 69fbdcb 528a9bd 2605d55 cf45a37 2605d55 cf45a37 e611c5a 2605d55 cf45a37 2605d55 b5434b8 2605d55 e9617d4 cf45a37 4184417 cf45a37 7bd7f55 cf45a37 e9617d4 cf45a37 4184417 cf45a37 e9617d4 4184417 cf45a37 e9617d4 4184417 cf45a37 815286a e9617d4 8953d62 cf45a37 8953d62 cf45a37 8953d62 4184417 8953d62 cf45a37 8953d62 44d6df8 cf45a37 8953d62 f809d41 b5434b8 f809d41 b5434b8 cf45a37 b5434b8 cf45a37 b5434b8 f809d41 b5434b8 e611c5a b5434b8 c1acf68 cf45a37 c1acf68 b5434b8 abd7b16 2605d55 c1acf68 2605d55 b5434b8 3e68ccf 2605d55 c1acf68 2605d55 3e68ccf c1acf68 cf45a37 c1acf68 cf45a37 c1acf68 cf45a37 c1acf68 e9617d4 cf45a37 e9617d4 cf45a37 e9617d4 cf45a37 e9617d4 cf45a37 e9617d4 c1acf68 2605d55 3e68ccf 2605d55 3e68ccf 1189403 2605d55 c1acf68 2605d55 c1acf68 e065b20 abd7b16 2605d55 b5434b8 3e68ccf 2605d55 c0b5a2b 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 3e68ccf 2605d55 e55d16a 2605d55 3e68ccf 2605d55 e55d16a 33d58d5 2605d55 e55d16a 94d93d2 2605d55 e55d16a 2605d55 33d58d5 c6643c7 2605d55 33d58d5 2605d55 c6643c7 2605d55 3e68ccf ae312d0 3e68ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
"""
Streamlit app containing the UI and the application logic.
"""
import datetime
import logging
import os
import pathlib
import random
import tempfile
from typing import List, Union
import httpx
import huggingface_hub
import json5
import ollama
import requests
import streamlit as st
from dotenv import load_dotenv
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate
import global_config as gcfg
from global_config import GlobalConfig
from helpers import llm_helper, pptx_helper, text_helper
load_dotenv()
RUN_IN_OFFLINE_MODE = os.getenv('RUN_IN_OFFLINE_MODE', 'False').lower() == 'true'
@st.cache_data
def _load_strings() -> dict:
"""
Load various strings to be displayed in the app.
:return: The dictionary of strings.
"""
with open(GlobalConfig.APP_STRINGS_FILE, 'r', encoding='utf-8') as in_file:
return json5.loads(in_file.read())
@st.cache_data
def _get_prompt_template(is_refinement: bool) -> str:
"""
Return a prompt template.
:param is_refinement: Whether this is the initial or refinement prompt.
:return: The prompt template as f-string.
"""
if is_refinement:
with open(GlobalConfig.REFINEMENT_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file:
template = in_file.read()
else:
with open(GlobalConfig.INITIAL_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file:
template = in_file.read()
return template
def are_all_inputs_valid(
user_prompt: str,
selected_provider: str,
selected_model: str,
user_key: str,
) -> bool:
"""
Validate user input and LLM selection.
:param user_prompt: The prompt.
:param selected_provider: The LLM provider.
:param selected_model: Name of the model.
:param user_key: User-provided API key.
:return: `True` if all inputs "look" OK; `False` otherwise.
"""
if not text_helper.is_valid_prompt(user_prompt):
handle_error(
'Not enough information provided!'
' Please be a little more descriptive and type a few words'
' with a few characters :)',
False
)
return False
if not selected_provider or not selected_model:
handle_error('No valid LLM provider and/or model name found!', False)
return False
if not llm_helper.is_valid_llm_provider_model(selected_provider, selected_model, user_key):
handle_error(
'The LLM settings do not look correct. Make sure that an API key/access token'
' is provided if the selected LLM requires it. An API key should be 6-64 characters'
' long, only containing alphanumeric characters, hyphens, and underscores.',
False
)
return False
return True
def handle_error(error_msg: str, should_log: bool):
"""
Display an error message in the app.
:param error_msg: The error message to be displayed.
:param should_log: If `True`, log the message.
"""
if should_log:
logger.error(error_msg)
st.error(error_msg)
def reset_api_key():
"""
Clear API key input when a different LLM is selected from the dropdown list.
"""
st.session_state.api_key_input = ''
APP_TEXT = _load_strings()
# Session variables
CHAT_MESSAGES = 'chat_messages'
DOWNLOAD_FILE_KEY = 'download_file_name'
IS_IT_REFINEMENT = 'is_it_refinement'
logger = logging.getLogger(__name__)
texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys())
captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts]
with st.sidebar:
# The PPT templates
pptx_template = st.sidebar.radio(
'1: Select a presentation template:',
texts,
captions=captions,
horizontal=True
)
if RUN_IN_OFFLINE_MODE:
llm_provider_to_use = st.text_input(
label='2: Enter Ollama model name to use:',
help=(
'Specify a correct, locally available LLM, found by running `ollama list`, for'
' example `mistral:v0.2` and `mistral-nemo:latest`. Having an Ollama-compatible'
' and supported GPU is strongly recommended.'
)
)
api_key_token: str = ''
else:
# The LLMs
llm_provider_to_use = st.sidebar.selectbox(
label='2: Select an LLM to use:',
options=[f'{k} ({v["description"]})' for k, v in GlobalConfig.VALID_MODELS.items()],
index=GlobalConfig.DEFAULT_MODEL_INDEX,
help=GlobalConfig.LLM_PROVIDER_HELP,
on_change=reset_api_key
).split(' ')[0]
# The API key/access token
api_key_token = st.text_input(
label=(
'3: Paste your API key/access token:\n\n'
'*Mandatory* for Cohere and Gemini LLMs.'
' *Optional* for HF Mistral LLMs but still encouraged.\n\n'
),
type='password',
key='api_key_input'
)
def build_ui():
"""
Display the input elements for content generation.
"""
st.title(APP_TEXT['app_name'])
st.subheader(APP_TEXT['caption'])
st.markdown(
'![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbarunsaha%2Fslide-deck-ai&countColor=%23263759)' # noqa: E501
)
today = datetime.date.today()
if today.month == 1 and 1 <= today.day <= 15:
st.success(
(
'Wishing you a happy and successful New Year!'
' It is your appreciation that keeps SlideDeck AI going.'
f' May you make some great slide decks in {today.year} ✨'
),
icon='🎆'
)
with st.expander('Usage Policies and Limitations'):
st.text(APP_TEXT['tos'] + '\n\n' + APP_TEXT['tos2'])
set_up_chat_ui()
def set_up_chat_ui():
"""
Prepare the chat interface and related functionality.
"""
with st.expander('Usage Instructions'):
st.markdown(GlobalConfig.CHAT_USAGE_INSTRUCTIONS)
st.info(APP_TEXT['like_feedback'])
st.chat_message('ai').write(random.choice(APP_TEXT['ai_greetings']))
history = StreamlitChatMessageHistory(key=CHAT_MESSAGES)
prompt_template = ChatPromptTemplate.from_template(
_get_prompt_template(
is_refinement=_is_it_refinement()
)
)
# Since Streamlit app reloads at every interaction, display the chat history
# from the save session state
for msg in history.messages:
st.chat_message(msg.type).code(msg.content, language='json')
if prompt := st.chat_input(
placeholder=APP_TEXT['chat_placeholder'],
max_chars=GlobalConfig.LLM_MODEL_MAX_INPUT_LENGTH
):
provider, llm_name = llm_helper.get_provider_model(
llm_provider_to_use,
use_ollama=RUN_IN_OFFLINE_MODE
)
if not are_all_inputs_valid(prompt, provider, llm_name, api_key_token):
return
logger.info(
'User input: %s | #characters: %d | LLM: %s',
prompt, len(prompt), llm_name
)
st.chat_message('user').write(prompt)
if _is_it_refinement():
user_messages = _get_user_messages()
user_messages.append(prompt)
list_of_msgs = [
f'{idx + 1}. {msg}' for idx, msg in enumerate(user_messages)
]
formatted_template = prompt_template.format(
**{
'instructions': '\n'.join(list_of_msgs),
'previous_content': _get_last_response(),
}
)
else:
formatted_template = prompt_template.format(**{'question': prompt})
progress_bar = st.progress(0, 'Preparing to call LLM...')
response = ''
try:
llm = llm_helper.get_langchain_llm(
provider=provider,
model=llm_name,
max_new_tokens=gcfg.get_max_output_tokens(llm_provider_to_use),
api_key=api_key_token.strip(),
)
if not llm:
handle_error(
'Failed to create an LLM instance! Make sure that you have selected the'
' correct model from the dropdown list and have provided correct API key'
' or access token.',
False
)
return
for _ in llm.stream(formatted_template):
response += _
# Update the progress bar with an approx progress percentage
progress_bar.progress(
min(
len(response) / gcfg.get_max_output_tokens(llm_provider_to_use),
0.95
),
text='Streaming content...this might take a while...'
)
except (httpx.ConnectError, requests.exceptions.ConnectionError):
handle_error(
'A connection error occurred while streaming content from the LLM endpoint.'
' Unfortunately, the slide deck cannot be generated. Please try again later.'
' Alternatively, try selecting a different LLM from the dropdown list. If you are'
' using Ollama, make sure that Ollama is already running on your system.',
True
)
return
except huggingface_hub.errors.ValidationError as ve:
handle_error(
f'An error occurred while trying to generate the content: {ve}'
'\nPlease try again with a significantly shorter input text.',
True
)
return
except ollama.ResponseError:
handle_error(
f'The model `{llm_name}` is unavailable with Ollama on your system.'
f' Make sure that you have provided the correct LLM name or pull it using'
f' `ollama pull {llm_name}`. View LLMs available locally by running `ollama list`.',
True
)
return
except Exception as ex:
handle_error(
f'An unexpected error occurred while generating the content: {ex}'
'\nPlease try again later, possibly with different inputs.'
' Alternatively, try selecting a different LLM from the dropdown list.'
' If you are using Cohere or Gemini models, make sure that you have provided'
' a correct API key.',
True
)
return
history.add_user_message(prompt)
history.add_ai_message(response)
# The content has been generated as JSON
# There maybe trailing ``` at the end of the response -- remove them
# To be careful: ``` may be part of the content as well when code is generated
response = text_helper.get_clean_json(response)
logger.info(
'Cleaned JSON length: %d', len(response)
)
# Now create the PPT file
progress_bar.progress(
GlobalConfig.LLM_PROGRESS_MAX,
text='Finding photos online and generating the slide deck...'
)
progress_bar.progress(1.0, text='Done!')
st.chat_message('ai').code(response, language='json')
if path := generate_slide_deck(response):
_display_download_button(path)
logger.info(
'#messages in history / 2: %d',
len(st.session_state[CHAT_MESSAGES]) / 2
)
def generate_slide_deck(json_str: str) -> Union[pathlib.Path, None]:
"""
Create a slide deck and return the file path. In case there is any error creating the slide
deck, the path may be to an empty file.
:param json_str: The content in *valid* JSON format.
:return: The path to the .pptx file or `None` in case of error.
"""
try:
parsed_data = json5.loads(json_str)
except ValueError:
handle_error(
'Encountered error while parsing JSON...will fix it and retry',
True
)
try:
parsed_data = json5.loads(text_helper.fix_malformed_json(json_str))
except ValueError:
handle_error(
'Encountered an error again while fixing JSON...'
'the slide deck cannot be created, unfortunately ☹'
'\nPlease try again later.',
True
)
return None
except RecursionError:
handle_error(
'Encountered a recursion error while parsing JSON...'
'the slide deck cannot be created, unfortunately ☹'
'\nPlease try again later.',
True
)
return None
except Exception:
handle_error(
'Encountered an error while parsing JSON...'
'the slide deck cannot be created, unfortunately ☹'
'\nPlease try again later.',
True
)
return None
if DOWNLOAD_FILE_KEY in st.session_state:
path = pathlib.Path(st.session_state[DOWNLOAD_FILE_KEY])
else:
temp = tempfile.NamedTemporaryFile(delete=False, suffix='.pptx')
path = pathlib.Path(temp.name)
st.session_state[DOWNLOAD_FILE_KEY] = str(path)
if temp:
temp.close()
try:
logger.debug('Creating PPTX file: %s...', st.session_state[DOWNLOAD_FILE_KEY])
pptx_helper.generate_powerpoint_presentation(
parsed_data,
slides_template=pptx_template,
output_file_path=path
)
except Exception as ex:
st.error(APP_TEXT['content_generation_error'])
logger.error('Caught a generic exception: %s', str(ex))
return path
def _is_it_refinement() -> bool:
"""
Whether it is the initial prompt or a refinement.
:return: True if it is the initial prompt; False otherwise.
"""
if IS_IT_REFINEMENT in st.session_state:
return True
if len(st.session_state[CHAT_MESSAGES]) >= 2:
# Prepare for the next call
st.session_state[IS_IT_REFINEMENT] = True
return True
return False
def _get_user_messages() -> List[str]:
"""
Get a list of user messages submitted until now from the session state.
:return: The list of user messages.
"""
return [
msg.content for msg in st.session_state[CHAT_MESSAGES] if isinstance(msg, HumanMessage)
]
def _get_last_response() -> str:
"""
Get the last response generated by AI.
:return: The response text.
"""
return st.session_state[CHAT_MESSAGES][-1].content
def _display_messages_history(view_messages: st.expander):
"""
Display the history of messages.
:param view_messages: The list of AI and Human messages.
"""
with view_messages:
view_messages.json(st.session_state[CHAT_MESSAGES])
def _display_download_button(file_path: pathlib.Path):
"""
Display a download button to download a slide deck.
:param file_path: The path of the .pptx file.
"""
with open(file_path, 'rb') as download_file:
st.download_button(
'Download PPTX file ⬇️',
data=download_file,
file_name='Presentation.pptx',
key=datetime.datetime.now()
)
def main():
"""
Trigger application run.
"""
build_ui()
if __name__ == '__main__':
main()
|