Spaces:
Running
Running
user
commited on
Commit
·
6e90287
1
Parent(s):
219d24c
update. focus on remote and pdf processing
Browse files
app.py
CHANGED
@@ -2,92 +2,58 @@ from flask import Flask, request, jsonify, send_from_directory
|
|
2 |
import requests
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
5 |
-
import
|
6 |
-
from PIL import Image
|
7 |
-
from pdf2image import convert_from_bytes
|
8 |
-
import base64
|
9 |
-
from io import BytesIO
|
10 |
|
11 |
load_dotenv()
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
|
|
|
|
|
|
15 |
API_URL = "https://api-inference.huggingface.co/models/"
|
16 |
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
|
17 |
-
HF_REPO_ID = os.getenv('HF_REPO_ID')
|
|
|
18 |
|
19 |
def query(payload, model):
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
buffered = BytesIO()
|
45 |
-
image.save(buffered, format="PNG")
|
46 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
47 |
-
|
48 |
-
# Process image with vision model
|
49 |
-
payload = {
|
50 |
-
"inputs": [
|
51 |
-
{
|
52 |
-
"image": img_str,
|
53 |
-
"text": "Describe the content of this image in detail."
|
54 |
-
}
|
55 |
-
]
|
56 |
-
}
|
57 |
-
response = query(payload, vision_model)
|
58 |
-
print(f"Page {i+1} processing response:", json.dumps(response, indent=2))
|
59 |
-
|
60 |
-
if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
|
61 |
-
summaries.append(response[0]['generated_text'])
|
62 |
-
else:
|
63 |
-
summaries.append(f"Error processing page {i+1}")
|
64 |
-
|
65 |
-
return " ".join(summaries)
|
66 |
-
except Exception as e:
|
67 |
-
print(f"Error in process_pdfs: {str(e)}")
|
68 |
-
print(traceback.format_exc())
|
69 |
-
return f"Error processing PDF: {str(e)}"
|
70 |
|
71 |
-
#
|
72 |
-
pdf_summary =
|
73 |
-
|
74 |
|
75 |
# Get embeddings for the summary
|
76 |
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
77 |
-
if not pdf_summary.startswith("Error")
|
78 |
-
try:
|
79 |
-
summary_embedding = query({"inputs": pdf_summary}, embedding_model)[0]
|
80 |
-
print("Successfully created summary embedding")
|
81 |
-
except Exception as e:
|
82 |
-
print(f"Error getting embedding: {str(e)}")
|
83 |
-
print(traceback.format_exc())
|
84 |
-
summary_embedding = None
|
85 |
-
else:
|
86 |
-
print("Skipping embedding due to PDF processing error")
|
87 |
-
summary_embedding = None
|
88 |
-
|
89 |
-
if summary_embedding is None:
|
90 |
-
print("WARNING: summary_embedding is None. The chatbot will not be able to provide meaningful responses.")
|
91 |
|
92 |
@app.route('/')
|
93 |
def home():
|
@@ -97,17 +63,18 @@ def home():
|
|
97 |
def ask():
|
98 |
prompt = request.json['question']
|
99 |
|
|
|
|
|
|
|
100 |
# Get embedding for the question
|
101 |
query_embedding = query({"inputs": prompt}, embedding_model)[0]
|
102 |
|
103 |
# Calculate similarity
|
104 |
similarity = sum(a*b for a, b in zip(query_embedding, summary_embedding))
|
105 |
|
106 |
-
# Generate
|
107 |
-
character_traits = "I am a knowledgeable and friendly AI assistant based on the content of the provided PDFs."
|
108 |
-
input_text = f"Character: {character_traits}\nContext: {pdf_summary}\nUser: {prompt}\nCharacter's response:"
|
109 |
-
|
110 |
generator_model = "google/flan-t5-base"
|
|
|
111 |
response = query({"inputs": input_text}, generator_model)[0]["generated_text"]
|
112 |
|
113 |
return jsonify({'response': response})
|
|
|
2 |
import requests
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
5 |
+
import logging
|
|
|
|
|
|
|
|
|
6 |
|
7 |
load_dotenv()
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
API_URL = "https://api-inference.huggingface.co/models/"
|
15 |
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
|
16 |
+
HF_REPO_ID = os.getenv('HF_REPO_ID')
|
17 |
+
PDF_FILENAME = os.getenv('PDF_FILENAME')
|
18 |
|
19 |
def query(payload, model):
|
20 |
+
try:
|
21 |
+
response = requests.post(API_URL + model, headers=headers, json=payload)
|
22 |
+
response.raise_for_status()
|
23 |
+
return response.json()
|
24 |
+
except requests.exceptions.RequestException as e:
|
25 |
+
logger.error(f"Error querying model {model}: {str(e)}")
|
26 |
+
return {"error": str(e)}
|
27 |
|
28 |
+
def process_pdf():
|
29 |
+
pdf_url = f"https://huggingface.co/spaces/{HF_REPO_ID}/resolve/main/data/{PDF_FILENAME}"
|
30 |
+
logger.info(f"Attempting to process PDF at URL: {pdf_url}")
|
31 |
|
32 |
+
model = "impira/layoutlm-document-qa"
|
33 |
+
payload = {
|
34 |
+
"inputs": {
|
35 |
+
"question": "Summarize the main points of this document.",
|
36 |
+
"image": pdf_url
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
response = query(payload, model)
|
41 |
+
logger.info(f"PDF processing response: {response}")
|
42 |
+
|
43 |
+
if 'error' in response:
|
44 |
+
return f"Error processing PDF: {response['error']}"
|
45 |
+
elif 'answer' in response:
|
46 |
+
return response['answer']
|
47 |
+
else:
|
48 |
+
return str(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Process PDF and get summary
|
51 |
+
pdf_summary = process_pdf()
|
52 |
+
logger.info(f"PDF Summary: {pdf_summary}")
|
53 |
|
54 |
# Get embeddings for the summary
|
55 |
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
56 |
+
summary_embedding = query({"inputs": pdf_summary}, embedding_model)[0] if not pdf_summary.startswith("Error") else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
@app.route('/')
|
59 |
def home():
|
|
|
63 |
def ask():
|
64 |
prompt = request.json['question']
|
65 |
|
66 |
+
if summary_embedding is None:
|
67 |
+
return jsonify({'response': "I'm sorry, but I couldn't process the PDF correctly. Please check the PDF file and try again later."})
|
68 |
+
|
69 |
# Get embedding for the question
|
70 |
query_embedding = query({"inputs": prompt}, embedding_model)[0]
|
71 |
|
72 |
# Calculate similarity
|
73 |
similarity = sum(a*b for a, b in zip(query_embedding, summary_embedding))
|
74 |
|
75 |
+
# Generate response using T5 model
|
|
|
|
|
|
|
76 |
generator_model = "google/flan-t5-base"
|
77 |
+
input_text = f"Context: {pdf_summary}\n\nQuestion: {prompt}\n\nAnswer:"
|
78 |
response = query({"inputs": input_text}, generator_model)[0]["generated_text"]
|
79 |
|
80 |
return jsonify({'response': response})
|