Spaces:
Sleeping
Sleeping
File size: 17,344 Bytes
f3f15dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
from time import time
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from datasetsforecast.losses import rmse, mae, smape, mse, mape
from st_aggrid import AgGrid
from src.nf import MODELS, forecast_pretrained_model
from src.model_descriptions import model_cards
DATASETS = {
"Electricity (Ercot COAST)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/ercot_COAST.csv",
#"Electriciy (ERCOT, multiple markets)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/ercot_multiple_ts.csv",
"Web Traffic (Peyton Manning)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/peyton_manning.csv",
"Demand (AirPassengers)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv",
"Finance (Exchange USD-EUR)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/usdeur.csv",
}
@st.cache_data
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv(index=False).encode("utf-8")
def plot(df, uid, df_forecast, model):
figs = []
figs += [
go.Scatter(
x=df["ds"],
y=df["y"],
mode="lines",
marker=dict(color="#236796"),
legendrank=1,
name=uid,
),
]
if df_forecast is not None:
ds_f = df_forecast["ds"].to_list()
lo = df_forecast["forecast_lo_90"].to_list()
hi = df_forecast["forecast_hi_90"].to_list()
figs += [
go.Scatter(
x=ds_f + ds_f[::-1],
y=hi + lo[::-1],
fill="toself",
fillcolor="#E7C4C0",
mode="lines",
line=dict(color="#E7C4C0"),
name="Prediction Intervals (90%)",
legendrank=5,
opacity=0.5,
hoverinfo="skip",
),
go.Scatter(
x=ds_f,
y=df_forecast["forecast"],
mode="lines",
legendrank=4,
marker=dict(color="#E7C4C0"),
name=f"Forecast {uid}",
),
]
fig = go.Figure(figs)
fig.update_layout(
{"plot_bgcolor": "rgba(0, 0, 0, 0)", "paper_bgcolor": "rgba(0, 0, 0, 0)"}
)
fig.update_layout(
title=f"Forecasts for {uid} using Transfer Learning (from {model})",
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
margin=dict(l=20, b=20),
xaxis=dict(rangeslider=dict(visible=True)),
)
initial_range = [df.tail(200)["ds"].iloc[0], ds_f[-1]]
fig["layout"]["xaxis"].update(range=initial_range)
return fig
def st_transfer_learning():
st.set_page_config(
page_title="Time Series Visualization",
page_icon="๐ฎ",
layout="wide",
initial_sidebar_state="expanded",
)
st.title(
"Transfer Learning: Revolutionizing Time Series by Nixtla"
)
st.write(
"<style>div.block-container{padding-top:2rem;}</style>", unsafe_allow_html=True
)
intro = """
The success of startups like Open AI and Stability highlights the potential for transfer learning (TL) techniques to have a similar impact on the field of time series forecasting.
TL can achieve lightning-fast predictions with a fraction of the computational cost by pre-training a flexible model on a large dataset and then using it on another dataset with little to no additional training.
In this live demo, you can use pre-trained models by Nixtla (trained on the M4 dataset) to predict your own datasets. You can also see how the models perform on unseen example datasets.
"""
st.write(intro)
required_cols = ["ds", "y"]
with st.sidebar.expander("Dataset", expanded=False):
data_selection = st.selectbox("Select example dataset", DATASETS.keys())
data_url = DATASETS[data_selection]
url_json = st.text_input("Data (you can pass your own url here)", data_url)
st.write(
"You can also upload a CSV file like [this one](https://github.com/Nixtla/transfer-learning-time-series/blob/main/datasets/air_passengers.csv)."
)
uploaded_file = st.file_uploader("Upload CSV")
with st.form("Data"):
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
cols = df.columns
timestamp_col = st.selectbox("Timestamp column", options=cols)
value_col = st.selectbox("Value column", options=cols)
else:
timestamp_col = st.text_input("Timestamp column", value="timestamp")
value_col = st.text_input("Value column", value="value")
st.write("You must press Submit each time you want to forecast.")
submitted = st.form_submit_button("Submit")
if submitted:
if uploaded_file is None:
st.write("Please provide a dataframe.")
if url_json.endswith("json"):
df = pd.read_json(url_json)
else:
df = pd.read_csv(url_json)
df = df.rename(
columns=dict(zip([timestamp_col, value_col], required_cols))
)
else:
# df = pd.read_csv(uploaded_file)
df = df.rename(
columns=dict(zip([timestamp_col, value_col], required_cols))
)
else:
if url_json.endswith("json"):
df = pd.read_json(url_json)
else:
df = pd.read_csv(url_json)
cols = df.columns
if "unique_id" in cols:
cols = cols[-2:]
df = df.rename(columns=dict(zip(cols, required_cols)))
if "unique_id" not in df:
df.insert(0, "unique_id", "ts_0")
df["ds"] = pd.to_datetime(df["ds"])
df = df.sort_values(["unique_id", "ds"])
with st.sidebar:
st.write("Define the pretrained model you want to use to forecast your data")
model_name = st.selectbox("Select your model", tuple(MODELS.keys()))
model_file = MODELS[model_name]["model"]
st.write("Choose how many steps you want to forecast")
fh = st.number_input("Forecast horizon", value=18)
st.write(
"Choose for how many steps the pretrained model will be updated using your data (use 0 for fast computation)"
)
max_steps = st.number_input("N-shot inference", value=0)
# tabs
tab_fcst, tab_cv, tab_docs, tab_nixtla = st.tabs(
[
"๐ Forecast",
"๐ Cross Validation",
"๐ Documentation",
"๐ฎ Nixtlaverse",
]
)
uids = df["unique_id"].unique()
fcst_cols = ["forecast_lo_90", "forecast", "forecast_hi_90"]
with tab_fcst:
uid = uids[0]#st.selectbox("Dataset", options=uids)
col1, col2 = st.columns([2, 4])
with col1:
tab_insample, tab_forecast = st.tabs(
["Modify input data", "Modify forecasts"]
)
with tab_insample:
df_grid = df.query("unique_id == @uid").drop(columns="unique_id")
grid_table = AgGrid(
df_grid,
editable=True,
theme="streamlit",
fit_columns_on_grid_load=True,
height=360,
)
df.loc[df["unique_id"] == uid, "y"] = (
grid_table["data"].sort_values("ds")["y"].values
)
# forecast code
init = time()
df_forecast = forecast_pretrained_model(df, model_file, fh, max_steps)
end = time()
df_forecast = df_forecast.rename(
columns=dict(zip(["y_5", "y_50", "y_95"], fcst_cols))
)
with tab_forecast:
df_fcst_grid = df_forecast.query("unique_id == @uid").filter(
["ds", "forecast"]
)
grid_fcst_table = AgGrid(
df_fcst_grid,
editable=True,
theme="streamlit",
fit_columns_on_grid_load=True,
height=360,
)
changes = (
df_forecast.query("unique_id == @uid")["forecast"].values
- grid_fcst_table["data"].sort_values("ds")["forecast"].values
)
for col in fcst_cols:
df_forecast.loc[df_forecast["unique_id"] == uid, col] = (
df_forecast.loc[df_forecast["unique_id"] == uid, col] - changes
)
with col2:
st.plotly_chart(
plot(
df.query("unique_id == @uid"),
uid,
df_forecast.query("unique_id == @uid"),
model_name,
),
use_container_width=True,
)
st.success(f'Done! Approximate inference time CPU: {0.7*(end-init):.2f} seconds.')
with tab_cv:
col_uid, col_n_windows = st.columns(2)
uid = uids[0]
#with col_uid:
# uid = st.selectbox("Time series to analyse", options=uids, key="uid_cv")
with col_n_windows:
n_windows = st.number_input("Cross validation windows", value=1)
df_forecast = []
for i_window in range(n_windows, 0, -1):
test = df.groupby("unique_id").tail(i_window * fh)
df_forecast_w = forecast_pretrained_model(
df.drop(test.index), model_file, fh, max_steps
)
df_forecast_w = df_forecast_w.rename(
columns=dict(zip(["y_5", "y_50", "y_95"], fcst_cols))
)
df_forecast_w.insert(2, "window", i_window)
df_forecast.append(df_forecast_w)
df_forecast = pd.concat(df_forecast)
df_forecast["ds"] = pd.to_datetime(df_forecast["ds"])
df_forecast = df_forecast.merge(df, how="left", on=["unique_id", "ds"])
metrics = [mae, mape, rmse, smape]
evaluation = df_forecast.groupby(["unique_id", "window"]).apply(
lambda df: [f'{fn(df["y"].values, df["forecast"]):.2f}' for fn in metrics]
)
evaluation = evaluation.rename("eval").reset_index()
evaluation["eval"] = evaluation["eval"].str.join(",")
evaluation[["MAE", "MAPE", "RMSE", "sMAPE"]] = evaluation["eval"].str.split(
",", expand=True
)
col_eval, col_plot = st.columns([2, 4])
with col_eval:
st.write("Evaluation metrics for each cross validation window")
st.dataframe(
evaluation.query("unique_id == @uid")
.drop(columns=["unique_id", "eval"])
.set_index("window")
)
with col_plot:
st.plotly_chart(
plot(
df.query("unique_id == @uid"),
uid,
df_forecast.query("unique_id == @uid").drop(columns="y"),
model_name,
),
use_container_width=True,
)
with tab_docs:
tab_transfer, tab_desc, tab_ref = st.tabs(
[
"๐ Transfer Learning",
"๐ Description of the model",
"๐ References",
]
)
with tab_desc:
model_card_name = MODELS[model_name]["card"]
st.subheader("Abstract")
st.write(f"""{model_cards[model_card_name]['Abstract']}""")
st.subheader("Intended use")
st.write(f"""{model_cards[model_card_name]['Intended use']}""")
st.subheader("Secondary use")
st.write(f"""{model_cards[model_card_name]['Secondary use']}""")
st.subheader("Limitations")
st.write(f"""{model_cards[model_card_name]['Limitations']}""")
st.subheader("Training data")
st.write(f"""{model_cards[model_card_name]['Training data']}""")
st.subheader("BibTex/Citation Info")
st.code(f"""{model_cards[model_card_name]['Citation Info']}""")
with tab_transfer:
transfer_text = """
Transfer learning refers to the process of pre-training a flexible model on a large dataset and using it later on other data with little to no training. It is one of the most outstanding ๐ achievements in Machine Learning ๐ง and has many practical applications.
For time series forecasting, the technique allows you to get lightning-fast predictions โก bypassing the tradeoff between accuracy and speed.
[This notebook](https://colab.research.google.com/drive/1uFCO2UBpH-5l2fk3KmxfU0oupsOC6v2n?authuser=0&pli=1#cell-5=) shows how to generate a pre-trained model and store it in a checkpoint to make it available for public use to forecast new time series never seen by the model.
**You can contribute with your pre-trained models by following [this Notebook](https://github.com/Nixtla/transfer-learning-time-series/blob/main/nbs/Transfer_Learning.ipynb) and sending us an email at federico[at]nixtla.io**
You can also take a look at list of pretrained models here. Currently we have this ones avaiable in our [API](https://docs.nixtla.io/reference/neural_transfer_neural_transfer_post) or [Demo](http://nixtla.io/transfer-learning/). You can also download the `.ckpt`:
- [Pretrained N-HiTS M4 Hourly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_hourly.ckpt)
- [Pretrained N-HiTS M4 Hourly (Tiny)](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_hourly_tiny.ckpt)
- [Pretrained N-HiTS M4 Daily](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_daily.ckpt)
- [Pretrained N-HiTS M4 Monthly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_monthly.ckpt)
- [Pretrained N-HiTS M4 Yearly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_yearly.ckpt)
- [Pretrained N-BEATS M4 Hourly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_hourly.ckpt)
- [Pretrained N-BEATS M4 Daily](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_daily.ckpt)
- [Pretrained N-BEATS M4 Weekly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_weekly.ckpt)
- [Pretrained N-BEATS M4 Monthly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_monthly.ckpt)
- [Pretrained N-BEATS M4 Yearly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_yearly.ckpt)
"""
st.write(transfer_text)
with tab_ref:
ref_text = """
If you are interested in the transfer learning literature applied to time series forecasting, take a look at these papers:
- [Meta-learning framework with applications to zero-shot time-series forecasting](https://arxiv.org/abs/2002.02887)
- [N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting](https://arxiv.org/abs/2201.12886)
"""
st.write(ref_text)
with tab_nixtla:
nixtla_text = """
Nixtla is a startup that is building forecasting software for Data Scientists and Devs.
We have been developing different open source libraries for machine learning, statistical and deep learning forecasting.
In our [GitHub repo](https://github.com/Nixtla), you can find the projects that support this APP.
"""
st.write(nixtla_text)
st.image(
"https://files.readme.io/168cdb2-Screen_Shot_2022-09-30_at_10.40.09.png",
width=800,
)
with st.sidebar:
st.download_button(
label="Download historical data as CSV",
data=convert_df(df),
file_name="history.csv",
mime="text/csv",
)
st.download_button(
label="Download forecasts as CSV",
data=convert_df(df_forecast),
file_name="forecasts.csv",
mime="text/csv",
)
if __name__ == "__main__":
st_transfer_learning()
|