Spaces:
Sleeping
Sleeping
Update app.py
Browse files- add page icon
- remove submit button and automatically calculate cost once the the prompt is entered in the text area
app.py
CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
from transformers import GPT2Tokenizer
|
4 |
|
|
|
|
|
5 |
# Load the tokenizer
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
7 |
|
@@ -36,20 +38,23 @@ def calculate_cost(model, input_tokens, output_tokens):
|
|
36 |
|
37 |
# Streamlit App
|
38 |
st.title("GPT/LLM Usage Cost Estimator")
|
|
|
39 |
|
40 |
# User input
|
41 |
-
user_input = st.text_area("
|
42 |
-
estimated_output_tokens = st.number_input("Estimated number of output tokens", min_value=0, value=
|
43 |
selected_model = st.selectbox("Select the model", list(rate_prices.keys()))
|
44 |
|
45 |
-
if st.button("Calculate Cost"):
|
|
|
46 |
input_tokens = count_tokens(user_input)
|
47 |
total_cost = calculate_cost(selected_model, input_tokens, estimated_output_tokens)
|
48 |
|
|
|
49 |
# Create a DataFrame for displaying results
|
50 |
results_df = pd.DataFrame({
|
51 |
"Detail": ["Number of Input Tokens", "Estimated Number of Output Tokens", "Estimated Total Cost"],
|
52 |
-
"Value": [input_tokens, estimated_output_tokens, f"${total_cost:.
|
53 |
})
|
54 |
|
55 |
# Display the results in a table
|
@@ -61,5 +66,5 @@ st.markdown("""
|
|
61 |
---
|
62 |
<sup>**Note:** The pricing information is based on [OpenAI's pricing page](https://openai.com/pricing) as of 12/14/2023.</sup>
|
63 |
<br>
|
64 |
-
<sub>**Disclaimer:** This application
|
65 |
""", unsafe_allow_html=True)
|
|
|
2 |
import pandas as pd
|
3 |
from transformers import GPT2Tokenizer
|
4 |
|
5 |
+
st.set_page_config(page_title="LLM Cost Estimator", page_icon=":moneybag:")
|
6 |
+
|
7 |
# Load the tokenizer
|
8 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
9 |
|
|
|
38 |
|
39 |
# Streamlit App
|
40 |
st.title("GPT/LLM Usage Cost Estimator")
|
41 |
+
st.markdown("> _A simple tool to estimate the cost of using OpenAI models based on the number of input and output tokens._")
|
42 |
|
43 |
# User input
|
44 |
+
user_input = st.text_area("", placeholder="Paste your prompt here...")
|
45 |
+
estimated_output_tokens = st.number_input("Estimated number of output tokens", min_value=0, value=100)
|
46 |
selected_model = st.selectbox("Select the model", list(rate_prices.keys()))
|
47 |
|
48 |
+
# if st.button("Calculate Cost"):
|
49 |
+
if user_input:
|
50 |
input_tokens = count_tokens(user_input)
|
51 |
total_cost = calculate_cost(selected_model, input_tokens, estimated_output_tokens)
|
52 |
|
53 |
+
st.markdown(f"### Estimated Cost: `${total_cost:.2f}`")
|
54 |
# Create a DataFrame for displaying results
|
55 |
results_df = pd.DataFrame({
|
56 |
"Detail": ["Number of Input Tokens", "Estimated Number of Output Tokens", "Estimated Total Cost"],
|
57 |
+
"Value": [input_tokens, estimated_output_tokens, f"${total_cost:.4f}"]
|
58 |
})
|
59 |
|
60 |
# Display the results in a table
|
|
|
66 |
---
|
67 |
<sup>**Note:** The pricing information is based on [OpenAI's pricing page](https://openai.com/pricing) as of 12/14/2023.</sup>
|
68 |
<br>
|
69 |
+
<sub>**Disclaimer:** This application was completely written by GPT-4 from a chat conversation.</sub>
|
70 |
""", unsafe_allow_html=True)
|