mcmillanmajora commited on
Commit
e258141
·
1 Parent(s): 38ed9e7

Removed placeholder from model_exploration and streamlit version from requirements

Browse files
Files changed (2) hide show
  1. posts/model_exploration.py +35 -5
  2. requirements.txt +1 -1
posts/model_exploration.py CHANGED
@@ -15,7 +15,23 @@ def run_article():
15
  st.markdown("""
16
  # Making a Hate Speech Detection Model
17
 
18
- This is where design choices will go.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  # Model Output Ranking
21
 
@@ -26,14 +42,23 @@ def run_article():
26
  ["classla/roberta-base-frenk-hate",
27
  "cardiffnlp/twitter-roberta-base-hate",
28
  "Hate-speech-CNERG/dehatebert-mono-english"],
 
29
  )
30
 
 
 
31
  input_1 = st.text_input("Input 1",
32
- placeholder="We shouldn't let [IDENTITY] suffer.")
 
 
33
  input_2 = st.text_input("Input 2",
34
- placeholder="I'd rather die than date [IDENTITY].")
 
 
35
  input_3 = st.text_input("Input 3",
36
- placeholder="Good morning.")
 
 
37
  inputs = [input_1, input_2, input_3]
38
 
39
  if st.form_submit_button(label="Rank inputs"):
@@ -61,7 +86,8 @@ def run_article():
61
  ],
62
  key='compare_model_2'
63
  )
64
- input_text = st.text_input("Comparison input")
 
65
  if st.form_submit_button(label="Compare models"):
66
  results = run_compare(model_name_1, model_name_2, input_text)
67
  st.dataframe(results)
@@ -110,4 +136,8 @@ def run_compare(name_1, name_2, text):
110
  return [out_1, out_2]
111
 
112
 
 
 
 
 
113
 
 
15
  st.markdown("""
16
  # Making a Hate Speech Detection Model
17
 
18
+ Once the data has been collected using the definitions identified for the
19
+ task, you can start training your model. At training, the model takes in
20
+ the data with labels and learns the associated context in the input data
21
+ for each label. Depending on the task design, the labels may be binary like
22
+ 'hateful' and 'non-hateful' or multiclass like 'neutral', 'offensive', and
23
+ 'attack'.
24
+
25
+ When presented with a new input string, the model then predicts the
26
+ likelihood that the input is classified as each of the available labels and
27
+ returns the label with the highest likelihood as well as how confident the
28
+ model is in its selection using a score from 0 to 1.
29
+
30
+ Neural models such as transformers are frequently trained as general
31
+ language models and then fine-tuned on specific classification tasks.
32
+ These models can vary in their architecture and the optimization
33
+ algorithms, sometimes resulting in very different output for the same
34
+ input text.
35
 
36
  # Model Output Ranking
37
 
 
42
  ["classla/roberta-base-frenk-hate",
43
  "cardiffnlp/twitter-roberta-base-hate",
44
  "Hate-speech-CNERG/dehatebert-mono-english"],
45
+ key="rank_model_select"
46
  )
47
 
48
+ # the placeholder key functionality was added in v1.2 of streamlit
49
+ # and versions on Spaces currently goesup to v1.0
50
  input_1 = st.text_input("Input 1",
51
+ #placeholder="We shouldn't let [IDENTITY] suffer.",
52
+ help= "Try a phrase like 'We shouldn't let [IDENTITY] suffer.'",
53
+ key="rank_input_1")
54
  input_2 = st.text_input("Input 2",
55
+ #placeholder="I'd rather die than date [IDENTITY].",
56
+ help= "Try a phrase like 'I'd rather die than date [IDENTITY].'",
57
+ key="rank_input_2")
58
  input_3 = st.text_input("Input 3",
59
+ #placeholder="Good morning.",
60
+ help= "Try a phrase like 'Good morning'",
61
+ key="rank_input_3")
62
  inputs = [input_1, input_2, input_3]
63
 
64
  if st.form_submit_button(label="Rank inputs"):
 
86
  ],
87
  key='compare_model_2'
88
  )
89
+ input_text = st.text_input("Comparison input",
90
+ key="compare_input")
91
  if st.form_submit_button(label="Compare models"):
92
  results = run_compare(model_name_1, model_name_2, input_text)
93
  st.dataframe(results)
 
136
  return [out_1, out_2]
137
 
138
 
139
+ def main():
140
+ run_article()
141
+
142
+ main()
143
 
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
- streamlit>=1.2.0
2
  transformers
3
  torch
 
1
+ streamlit
2
  transformers
3
  torch