Update music_recommendations.py
Browse files- music_recommendations.py +59 -59
music_recommendations.py
CHANGED
@@ -1,59 +1,59 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
import scipy.io.wavfile
|
4 |
-
from openai import OpenAI
|
5 |
-
import time
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
# Initialize the OpenAI client
|
9 |
-
client = OpenAI(
|
10 |
-
api_key="a99ae8e15f1e439a935b5e1cf2005c8b",
|
11 |
-
base_url="https://api.aimlapi.com",
|
12 |
-
)
|
13 |
-
|
14 |
-
# Streamlit app layout
|
15 |
-
st.title("Mood-based Music Generator")
|
16 |
-
|
17 |
-
# Ask the user for their feeling and preferred music style via Streamlit inputs
|
18 |
-
user_feeling = st.text_input("How are you feeling right now?", value="feeling down")
|
19 |
-
music_style = st.text_input("What music style do you prefer?", value="pop")
|
20 |
-
|
21 |
-
# Button to trigger music generation
|
22 |
-
if st.button("Generate Music"):
|
23 |
-
with st.spinner("Generating music, please wait..."):
|
24 |
-
# Send the feeling and music style to the OpenAI model
|
25 |
-
response = client.chat.completions.create(
|
26 |
-
model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
27 |
-
messages=[
|
28 |
-
{
|
29 |
-
"role": "system",
|
30 |
-
"content": "You are a musical assistant that, based on a user's feeling, can describe it as a musical instrument. Provide a short one-sentence response."
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"role": "user",
|
34 |
-
"content": f"I am feeling {user_feeling}. Can you make me happy with a {music_style} style of music?"
|
35 |
-
},
|
36 |
-
],
|
37 |
-
)
|
38 |
-
|
39 |
-
message = response.choices[0].message.content
|
40 |
-
st.write(f"Assistant: {message}")
|
41 |
-
|
42 |
-
# Load the synthesizer model for music generation
|
43 |
-
synthesiser = pipeline("text-to-audio", "facebook/musicgen-small")
|
44 |
-
|
45 |
-
# Simulate a short wait to represent loading time for music generation
|
46 |
-
time.sleep(2)
|
47 |
-
|
48 |
-
# Generate the music using the synthesizer model based on the message
|
49 |
-
music = synthesiser(message, forward_params={"do_sample": True, "guidance_scale": 1})
|
50 |
-
|
51 |
-
# Save the generated audio to a file
|
52 |
-
audio_filename = "musicgen_out.wav"
|
53 |
-
scipy.io.wavfile.write(audio_filename, rate=music["sampling_rate"], data=np.array(music["audio"]))
|
54 |
-
|
55 |
-
st.success("Music has been generated!")
|
56 |
-
|
57 |
-
# Play the generated audio in Streamlit
|
58 |
-
st.audio(audio_filename)
|
59 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import scipy.io.wavfile
|
4 |
+
from openai import OpenAI
|
5 |
+
import time
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Initialize the OpenAI client
|
9 |
+
client = OpenAI(
|
10 |
+
api_key="a99ae8e15f1e439a935b5e1cf2005c8b",
|
11 |
+
base_url="https://api.aimlapi.com",
|
12 |
+
)
|
13 |
+
|
14 |
+
# Streamlit app layout
|
15 |
+
st.title("Mood-based Music Generator")
|
16 |
+
|
17 |
+
# Ask the user for their feeling and preferred music style via Streamlit inputs
|
18 |
+
user_feeling = st.text_input("How are you feeling right now?", value="feeling down")
|
19 |
+
music_style = st.text_input("What music style do you prefer?", value="pop")
|
20 |
+
|
21 |
+
# Button to trigger music generation
|
22 |
+
if st.button("Generate Music"):
|
23 |
+
with st.spinner("Generating music, please wait..."):
|
24 |
+
# Send the feeling and music style to the OpenAI model
|
25 |
+
response = client.chat.completions.create(
|
26 |
+
model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
27 |
+
messages=[
|
28 |
+
{
|
29 |
+
"role": "system",
|
30 |
+
"content": "You are a musical assistant that, based on a user's feeling, can describe it as a musical instrument. Provide a short one-sentence response."
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"role": "user",
|
34 |
+
"content": f"I am feeling {user_feeling}. Can you make me happy with a {music_style} style of music?"
|
35 |
+
},
|
36 |
+
],
|
37 |
+
)
|
38 |
+
|
39 |
+
message = response.choices[0].message.content
|
40 |
+
st.write(f"Assistant: {message}")
|
41 |
+
|
42 |
+
# Load the synthesizer model for music generation
|
43 |
+
synthesiser = pipeline("text-to-audio", "facebook/musicgen-small")
|
44 |
+
|
45 |
+
# Simulate a short wait to represent loading time for music generation
|
46 |
+
time.sleep(2)
|
47 |
+
|
48 |
+
# Generate the music using the synthesizer model based on the message
|
49 |
+
music = synthesiser(message, forward_params={"do_sample": True, "guidance_scale": 1})
|
50 |
+
|
51 |
+
# Save the generated audio to a file
|
52 |
+
audio_filename = "musicgen_out.wav"
|
53 |
+
scipy.io.wavfile.write(audio_filename, rate=music["sampling_rate"], data=np.array(music["audio"]))
|
54 |
+
|
55 |
+
st.success("Music has been generated!")
|
56 |
+
|
57 |
+
# Play the generated audio in Streamlit
|
58 |
+
st.audio(audio_filename)
|
59 |
+
|