axolotyy commited on
Commit
153d153
·
verified ·
1 Parent(s): f755bae

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ # Define the model architecture
6
+ class SumModel(nn.Module):
7
+ def __init__(self):
8
+ super(SumModel, self).__init__()
9
+ self.fc1 = nn.Linear(2, 128)
10
+ self.fc2 = nn.Linear(128, 128)
11
+ self.fc3 = nn.Linear(128, 1)
12
+
13
+ def forward(self, x):
14
+ x = torch.relu(self.fc1(x))
15
+ x = torch.relu(self.fc2(x))
16
+ x = self.fc3(x)
17
+ return x
18
+
19
+ # Load the pre-trained model
20
+ model = SumModel()
21
+ model.load_state_dict(torch.load('sum_model.pth'))
22
+ model.eval() # Set the model to evaluation mode
23
+
24
+ # Function to predict the sum of two numbers
25
+ def calculate_sum(num1, num2):
26
+ # Prepare the input tensor
27
+ inputs = torch.tensor([[num1, num2]]).float()
28
+
29
+ # Forward pass
30
+ with torch.no_grad(): # Disable gradient tracking during inference
31
+ outputs = model(inputs)
32
+
33
+ # Get the predicted sum
34
+ predicted_sum = outputs.item()
35
+
36
+ return predicted_sum
37
+
38
+ # Create a Gradio interface
39
+ iface = gr.Interface(
40
+ fn=calculate_sum,
41
+ inputs=["number", "number"],
42
+ outputs="number",
43
+ title="Sum Predictor",
44
+ description="Enter two numbers to predict their sum"
45
+ )
46
+
47
+ # Launch the Gradio app
48
+ iface.launch()