awacke1's picture
Update app.py
3430c63
import streamlit as st
import spacy
import wikipediaapi
import wikipedia
from wikipedia.exceptions import DisambiguationError
from transformers import TFAutoModel, AutoTokenizer
import numpy as np
import pandas as pd
import faiss
import datetime
import time
try:
nlp = spacy.load("en_core_web_sm")
except:
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
wh_words = ['what', 'who', 'how', 'when', 'which']
def get_concepts(text):
text = text.lower()
doc = nlp(text)
concepts = []
for chunk in doc.noun_chunks:
if chunk.text not in wh_words:
concepts.append(chunk.text)
return concepts
def get_passages(text, k=100):
doc = nlp(text)
passages = []
passage_len = 0
passage = ""
sents = list(doc.sents)
for i in range(len(sents)):
sen = sents[i]
passage_len += len(sen)
if passage_len >= k:
passages.append(passage)
passage = sen.text
passage_len = len(sen)
continue
elif i == (len(sents) - 1):
passage += " " + sen.text
passages.append(passage)
passage = ""
passage_len = 0
continue
passage += " " + sen.text
return passages
def get_dicts_for_dpr(concepts, n_results=20, k=100):
dicts = []
for concept in concepts:
wikis = wikipedia.search(concept, results=n_results)
st.write(f"{concept} No of Wikis: {len(wikis)}")
for wiki in wikis:
try:
html_page = wikipedia.page(title=wiki, auto_suggest=False)
except DisambiguationError:
continue
htmlResults = html_page.content
passages = get_passages(htmlResults, k=k)
for passage in passages:
i_dicts = {}
i_dicts['text'] = passage
i_dicts['title'] = wiki
dicts.append(i_dicts)
return dicts
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
def get_title_text_combined(passage_dicts):
res = []
for p in passage_dicts:
res.append(tuple((p['title'], p['text'])))
return res
def extracted_passage_embeddings(processed_passages, max_length=156):
passage_inputs = p_tokenizer.batch_encode_plus(
processed_passages,
add_special_tokens=True,
truncation=True,
padding="max_length",
max_length=max_length,
return_token_type_ids=True
)
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']),
np.array(passage_inputs['token_type_ids'])],
batch_size=64,
verbose=1)
return passage_embeddings
def extracted_query_embeddings(queries, max_length=64):
query_inputs = q_tokenizer.batch_encode_plus(
queries,
add_special_tokens=True,
truncation=True,
padding="max_length",
max_length=max_length,
return_token_type_ids=True
)
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
np.array(query_inputs['attention_mask']),
np.array(query_inputs['token_type_ids'])],
batch_size=1,
verbose=1)
return query_embeddings
def get_pagetext(page):
s = str(page).replace("/t","")
return s
def get_wiki_summary(search):
wiki_wiki = wikipediaapi.Wikipedia('en')
page = wiki_wiki.page(search)
def get_wiki_summaryDF(search):
wiki_wiki = wikipediaapi.Wikipedia('en')
page = wiki_wiki.page(search)
isExist = page.exists()
if not isExist:
return isExist, "Not found", "Not found", "Not found", "Not found"
pageurl = page.fullurl
pagetitle = page.title
pagesummary = page.summary[0:60]
pagetext = get_pagetext(page.text)
backlinks = page.backlinks
linklist = ""
for link in backlinks.items():
pui = link[0]
linklist += pui + " , "
a=1
categories = page.categories
categorylist = ""
for category in categories.items():
pui = category[0]
categorylist += pui + " , "
a=1
links = page.links
linklist2 = ""
for link in links.items():
pui = link[0]
linklist2 += pui + " , "
a=1
sections = page.sections
ex_dic = {
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
}
df = pd.DataFrame(ex_dic)
return df
def save_message(name, message):
now = datetime.datetime.now()
timestamp = now.strftime("%Y-%m-%d %H:%M:%S")
with open("chat.txt", "a") as f:
f.write(f"{timestamp} - {name}: {message}\n")
def press_release():
st.markdown("""πŸŽ‰πŸŽŠ Breaking News! πŸ“’πŸ“£
Introducing StreamlitWikipediaChat - the ultimate way to chat with Wikipedia and the whole world at the same time! πŸŒŽπŸ“šπŸ‘‹
Are you tired of reading boring articles on Wikipedia? Do you want to have some fun while learning new things? Then StreamlitWikipediaChat is just the thing for you! πŸ˜ƒπŸ’»
With StreamlitWikipediaChat, you can ask Wikipedia anything you want and get instant responses! Whether you want to know the capital of Madagascar or how to make a delicious chocolate cake, Wikipedia has got you covered. 🍰🌍
But that's not all! You can also chat with other people from around the world who are using StreamlitWikipediaChat at the same time. It's like a virtual classroom where you can learn from and teach others. πŸŒπŸ‘¨β€πŸ«πŸ‘©β€πŸ«
And the best part? StreamlitWikipediaChat is super easy to use! All you have to do is type in your question and hit send. That's it! πŸ€―πŸ™Œ
So, what are you waiting for? Join the fun and start chatting with Wikipedia and the world today! πŸ˜ŽπŸŽ‰
StreamlitWikipediaChat - where learning meets fun! πŸ€“πŸŽˆ""")
def main():
st.title("Streamlit Chat")
name = st.text_input("Enter your name")
message = st.text_input("Enter a topic to share from Wikipedia")
if st.button("Submit"):
# wiki
df = get_wiki_summaryDF(message)
save_message(name, message)
save_message(name, df)
st.text("Message sent!")
st.text("Chat history:")
with open("chat.txt", "a+") as f:
f.seek(0)
chat_history = f.read()
#st.text(chat_history)
st.markdown(chat_history)
countdown = st.empty()
t = 60
while t:
mins, secs = divmod(t, 60)
countdown.text(f"Time remaining: {mins:02d}:{secs:02d}")
time.sleep(1)
t -= 1
if t == 0:
countdown.text("Time's up!")
with open("chat.txt", "a+") as f:
f.seek(0)
chat_history = f.read()
#st.text(chat_history)
st.markdown(chat_history)
press_release()
t = 60
if __name__ == "__main__":
main()