|
import numpy as np |
|
import torch |
|
import gradio as gr |
|
import spaces |
|
from queue import Queue |
|
from threading import Thread |
|
from typing import Optional |
|
from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed |
|
from transformers.generation.streamers import BaseStreamer |
|
|
|
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") |
|
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small") |
|
|
|
title = "9πMusicHub - Text to Music Stream Generator" |
|
description = """ Facebook MusicGen-Small Model - Generate and stream music with model https://huggingface.co/facebook/musicgen-small """ |
|
article = """ |
|
## How It Works: |
|
MusicGen is an auto-regressive transformer-based model, meaning generates audio codes (tokens) in a causal fashion. |
|
At each decoding step, the model generates a new set of audio codes, conditional on the text input and all previous audio codes. From the |
|
frame rate of the [EnCodec model](https://huggingface.co/facebook/encodec_32khz) used to decode the generated codes to audio waveform. |
|
""" |
|
|
|
|
|
class MusicgenStreamer(BaseStreamer): |
|
def __init__( |
|
self, |
|
model: MusicgenForConditionalGeneration, |
|
device: Optional[str] = None, |
|
play_steps: Optional[int] = 10, |
|
stride: Optional[int] = None, |
|
timeout: Optional[float] = None, |
|
): |
|
""" |
|
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is |
|
useful for applications that benefit from acessing the generated audio in a non-blocking way (e.g. in an interactive |
|
Gradio demo). |
|
Parameters: |
|
model (`MusicgenForConditionalGeneration`): |
|
The MusicGen model used to generate the audio waveform. |
|
device (`str`, *optional*): |
|
The torch device on which to run the computation. If `None`, will default to the device of the model. |
|
play_steps (`int`, *optional*, defaults to 10): |
|
The number of generation steps with which to return the generated audio array. Using fewer steps will |
|
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value |
|
should be tuned to your device and latency requirements. |
|
stride (`int`, *optional*): |
|
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces |
|
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to |
|
play_steps // 6 in the audio space. |
|
timeout (`int`, *optional*): |
|
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions |
|
in `.generate()`, when it is called in a separate thread. |
|
""" |
|
self.decoder = model.decoder |
|
self.audio_encoder = model.audio_encoder |
|
self.generation_config = model.generation_config |
|
self.device = device if device is not None else model.device |
|
|
|
|
|
self.play_steps = play_steps |
|
if stride is not None: |
|
self.stride = stride |
|
else: |
|
hop_length = np.prod(self.audio_encoder.config.upsampling_ratios) |
|
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6 |
|
self.token_cache = None |
|
self.to_yield = 0 |
|
|
|
|
|
self.audio_queue = Queue() |
|
self.stop_signal = None |
|
self.timeout = timeout |
|
|
|
def apply_delay_pattern_mask(self, input_ids): |
|
|
|
_, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( |
|
input_ids[:, :1], |
|
pad_token_id=self.generation_config.decoder_start_token_id, |
|
max_length=input_ids.shape[-1], |
|
) |
|
|
|
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask) |
|
|
|
|
|
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape( |
|
1, self.decoder.num_codebooks, -1 |
|
) |
|
|
|
|
|
input_ids = input_ids[None, ...] |
|
|
|
|
|
input_ids = input_ids.to(self.audio_encoder.device) |
|
|
|
output_values = self.audio_encoder.decode( |
|
input_ids, |
|
audio_scales=[None], |
|
) |
|
audio_values = output_values.audio_values[0, 0] |
|
return audio_values.cpu().float().numpy() |
|
|
|
def put(self, value): |
|
batch_size = value.shape[0] // self.decoder.num_codebooks |
|
if batch_size > 1: |
|
raise ValueError("MusicgenStreamer only supports batch size 1") |
|
|
|
if self.token_cache is None: |
|
self.token_cache = value |
|
else: |
|
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1) |
|
|
|
if self.token_cache.shape[-1] % self.play_steps == 0: |
|
audio_values = self.apply_delay_pattern_mask(self.token_cache) |
|
self.on_finalized_audio(audio_values[self.to_yield : -self.stride]) |
|
self.to_yield += len(audio_values) - self.to_yield - self.stride |
|
|
|
def end(self): |
|
"""Flushes any remaining cache and appends the stop symbol.""" |
|
if self.token_cache is not None: |
|
audio_values = self.apply_delay_pattern_mask(self.token_cache) |
|
else: |
|
audio_values = np.zeros(self.to_yield) |
|
|
|
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True) |
|
|
|
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False): |
|
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue.""" |
|
self.audio_queue.put(audio, timeout=self.timeout) |
|
if stream_end: |
|
self.audio_queue.put(self.stop_signal, timeout=self.timeout) |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
value = self.audio_queue.get(timeout=self.timeout) |
|
if not isinstance(value, np.ndarray) and value == self.stop_signal: |
|
raise StopIteration() |
|
else: |
|
return value |
|
|
|
|
|
sampling_rate = model.audio_encoder.config.sampling_rate |
|
frame_rate = model.audio_encoder.config.frame_rate |
|
|
|
target_dtype = np.int16 |
|
max_range = np.iinfo(target_dtype).max |
|
|
|
|
|
@spaces.GPU |
|
def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0): |
|
max_new_tokens = int(frame_rate * audio_length_in_s) |
|
play_steps = int(frame_rate * play_steps_in_s) |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
if device != model.device: |
|
model.to(device) |
|
if device == "cuda:0": |
|
model.half() |
|
|
|
inputs = processor( |
|
text=text_prompt, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
|
|
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps) |
|
|
|
generation_kwargs = dict( |
|
**inputs.to(device), |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
set_seed(seed) |
|
for new_audio in streamer: |
|
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") |
|
new_audio = (new_audio * max_range).astype(np.int16) |
|
yield (sampling_rate, new_audio) |
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_audio, |
|
inputs=[ |
|
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"), |
|
gr.Slider(10, 30, value=15, step=5, label="Audio length in seconds"), |
|
gr.Slider(0.5, 2.5, value=0.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"), |
|
gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"), |
|
], |
|
outputs=[ |
|
gr.Audio(label="Generated Music", streaming=True, autoplay=True) |
|
], |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples = [ |
|
["π§ Yoga, pilates, and other low-intensity activities. bpm: 60-90", 30, 0.5, 5], |
|
["π Power yoga. bpm: 100-140", 30, 0.5, 5], |
|
["πͺ CrossFit, indoor cycling, or other HIIT forms. bpm: 140-180+", 30, 0.5, 5], |
|
["π Zumba and dance. bpm: 130-170", 30, 0.5, 5], |
|
["π Steady-state cardio, such as jogging. bpm: 120-140", 30, 0.5, 5], |
|
["πββοΈ Runners. bpm: 150-190", 30, 0.5, 5], |
|
["πΆ Walking or cycling. bpm: 80-110", 30, 0.5, 5], |
|
["πββοΈ Long-distance runs. bpm: 120-140", 30, 0.5, 5], |
|
["πββοΈ Shorter, more intense runs. bpm: 147-160", 30, 0.5, 5], |
|
["ποΈ Weightlifting. bpm: 130-140", 30, 0.5, 5], |
|
["π€Έ Low impact aerobics. bpm: 133-148", 30, 0.5, 5], |
|
["πΈ Ballad / Slow. bpm: 50-85", 30, 0.5, 5], |
|
["πΉ Mid-Tempo. bpm: 90-105", 30, 0.5, 5], |
|
["π Up-Tempo. bpm: 110-125", 30, 0.5, 5], |
|
["π₯ Fast. bpm: 130+", 30, 0.5, 5], |
|
["π΅ Blues. bpm: 50+", 30, 0.5, 5], |
|
["π¬ Ambient/Movie Score. bpm: 80", 30, 0.5, 5], |
|
["π Down Tempo. bpm: 65-95", 30, 0.5, 5], |
|
["π΄ Reggae. bpm: 60-90", 30, 0.5, 5], |
|
["π€ Hip-Hop. bpm: 85-110", 30, 0.5, 5], |
|
["πΈ Rock. bpm: 90-100", 30, 0.5, 5], |
|
["πΈ Alternative Rock. bpm: 120", 30, 0.5, 5], |
|
["π RnB/Motown. bpm: 75-100", 30, 0.5, 5], |
|
["πΊ Dance/House. bpm: 110-130", 30, 0.5, 5], |
|
["β¨ Trance. bpm: 120-140", 30, 0.5, 5], |
|
["ποΈ Techno. bpm: 130-150", 30, 0.5, 5], |
|
["π Dubstep. bpm: 130-145", 30, 0.5, 5], |
|
["π₯ Drum n' Bass. bpm: 150-170", 30, 0.5, 5], |
|
["π€ Punk Rock. bpm: 140-200", 30, 0.5, 5], |
|
["πΎ Bluegrass. bpm: 120-240", 30, 0.5, 5] |
|
], |
|
|
|
|
|
title=title, |
|
description=description, |
|
article=article, |
|
cache_examples=False, |
|
) |
|
|
|
demo.queue().launch() |