Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from typing import List, Dict
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
from huggingface_hub import HfApi, ModelCard
|
@@ -20,14 +21,14 @@ def search_hub(query: str, search_type: str) -> pd.DataFrame:
|
|
20 |
|
21 |
def open_url(row):
|
22 |
if row is not None and not row.empty:
|
23 |
-
url = row['link']
|
24 |
return f'<iframe src="{url}" width="100%" height="600px"></iframe>'
|
25 |
else:
|
26 |
return ""
|
27 |
|
28 |
def load_metadata(row, search_type):
|
29 |
if row is not None and not row.empty:
|
30 |
-
item_id = row['id']
|
31 |
|
32 |
if search_type == "Models":
|
33 |
try:
|
@@ -94,14 +95,7 @@ with gr.Blocks() as demo:
|
|
94 |
return df, aggregated
|
95 |
|
96 |
search_button.click(search_and_aggregate, inputs=[search_query, search_type], outputs=[results_df, aggregated_output])
|
97 |
-
|
98 |
-
|
99 |
-
if row is not None:
|
100 |
-
url_content = open_url(row)
|
101 |
-
metadata_content = load_metadata(row, search_type)
|
102 |
-
return url_content, metadata_content
|
103 |
-
return "", ""
|
104 |
-
|
105 |
-
results_df.select(on_select_row, outputs=[web_view, metadata_output])
|
106 |
|
107 |
-
demo.launch(debug=True)
|
|
|
1 |
from typing import List, Dict
|
2 |
+
import httpx
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
from huggingface_hub import HfApi, ModelCard
|
|
|
21 |
|
22 |
def open_url(row):
|
23 |
if row is not None and not row.empty:
|
24 |
+
url = row.iloc[0]['link']
|
25 |
return f'<iframe src="{url}" width="100%" height="600px"></iframe>'
|
26 |
else:
|
27 |
return ""
|
28 |
|
29 |
def load_metadata(row, search_type):
|
30 |
if row is not None and not row.empty:
|
31 |
+
item_id = row.iloc[0]['id']
|
32 |
|
33 |
if search_type == "Models":
|
34 |
try:
|
|
|
95 |
return df, aggregated
|
96 |
|
97 |
search_button.click(search_and_aggregate, inputs=[search_query, search_type], outputs=[results_df, aggregated_output])
|
98 |
+
results_df.select(open_url, outputs=[web_view])
|
99 |
+
results_df.select(load_metadata, inputs=[results_df, search_type], outputs=[metadata_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
demo.launch(debug=True)
|