Update app.py
Browse files
app.py
CHANGED
@@ -6,33 +6,29 @@ from huggingface_hub import HfApi, ModelCard
|
|
6 |
|
7 |
def search_hub(query: str, search_type: str) -> pd.DataFrame:
|
8 |
api = HfApi()
|
9 |
-
data = []
|
10 |
-
|
11 |
if search_type == "Models":
|
12 |
results = api.list_models(search=query)
|
13 |
-
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads,
|
14 |
-
"link": f"https://huggingface.co/{model.modelId}"} for model in results]
|
15 |
elif search_type == "Datasets":
|
16 |
results = api.list_datasets(search=query)
|
17 |
-
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads,
|
18 |
-
"link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results]
|
19 |
elif search_type == "Spaces":
|
20 |
results = api.list_spaces(search=query)
|
21 |
-
data = [{"id": space.id, "author": space.author,
|
22 |
-
|
23 |
-
|
24 |
return pd.DataFrame(data)
|
25 |
|
26 |
def open_url(row):
|
27 |
if row is not None and not row.empty:
|
28 |
-
url = row['link']
|
29 |
return f'<iframe src="{url}" width="100%" height="600px"></iframe>'
|
30 |
else:
|
31 |
return ""
|
32 |
|
33 |
def load_metadata(row, search_type):
|
34 |
if row is not None and not row.empty:
|
35 |
-
item_id = row['id']
|
36 |
|
37 |
if search_type == "Models":
|
38 |
try:
|
@@ -89,21 +85,17 @@ with gr.Blocks() as demo:
|
|
89 |
search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models")
|
90 |
search_button = gr.Button("Search")
|
91 |
results_df = gr.DataFrame(label="Search Results", wrap=True, interactive=True)
|
92 |
-
|
93 |
metadata_output = gr.Textbox(label="Metadata", lines=10)
|
94 |
aggregated_output = gr.JSON(label="Aggregated Content")
|
95 |
-
iframe_output = gr.HTML(label="Web Page")
|
96 |
|
97 |
def search_and_aggregate(query, search_type):
|
98 |
df = search_hub(query, search_type)
|
99 |
aggregated = SwarmyTime(df.to_dict('records'))
|
100 |
return df, aggregated
|
101 |
|
102 |
-
def display_iframe(row):
|
103 |
-
return open_url(row)
|
104 |
-
|
105 |
search_button.click(search_and_aggregate, inputs=[search_query, search_type], outputs=[results_df, aggregated_output])
|
106 |
-
results_df.select(
|
107 |
results_df.select(load_metadata, inputs=[results_df, search_type], outputs=[metadata_output])
|
108 |
|
109 |
-
demo.launch(debug=True)
|
|
|
6 |
|
7 |
def search_hub(query: str, search_type: str) -> pd.DataFrame:
|
8 |
api = HfApi()
|
|
|
|
|
9 |
if search_type == "Models":
|
10 |
results = api.list_models(search=query)
|
11 |
+
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results]
|
|
|
12 |
elif search_type == "Datasets":
|
13 |
results = api.list_datasets(search=query)
|
14 |
+
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results]
|
|
|
15 |
elif search_type == "Spaces":
|
16 |
results = api.list_spaces(search=query)
|
17 |
+
data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results]
|
18 |
+
else:
|
19 |
+
data = []
|
20 |
return pd.DataFrame(data)
|
21 |
|
22 |
def open_url(row):
|
23 |
if row is not None and not row.empty:
|
24 |
+
url = row.iloc[0]['link']
|
25 |
return f'<iframe src="{url}" width="100%" height="600px"></iframe>'
|
26 |
else:
|
27 |
return ""
|
28 |
|
29 |
def load_metadata(row, search_type):
|
30 |
if row is not None and not row.empty:
|
31 |
+
item_id = row.iloc[0]['id']
|
32 |
|
33 |
if search_type == "Models":
|
34 |
try:
|
|
|
85 |
search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models")
|
86 |
search_button = gr.Button("Search")
|
87 |
results_df = gr.DataFrame(label="Search Results", wrap=True, interactive=True)
|
88 |
+
web_view = gr.HTML(label="Web View")
|
89 |
metadata_output = gr.Textbox(label="Metadata", lines=10)
|
90 |
aggregated_output = gr.JSON(label="Aggregated Content")
|
|
|
91 |
|
92 |
def search_and_aggregate(query, search_type):
|
93 |
df = search_hub(query, search_type)
|
94 |
aggregated = SwarmyTime(df.to_dict('records'))
|
95 |
return df, aggregated
|
96 |
|
|
|
|
|
|
|
97 |
search_button.click(search_and_aggregate, inputs=[search_query, search_type], outputs=[results_df, aggregated_output])
|
98 |
+
results_df.select(open_url, outputs=[web_view])
|
99 |
results_df.select(load_metadata, inputs=[results_df, search_type], outputs=[metadata_output])
|
100 |
|
101 |
+
demo.launch(debug=True)
|