Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict
|
2 |
+
import httpx
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from huggingface_hub import HfApi, ModelCard
|
6 |
+
|
7 |
+
def search_hub(query: str, search_type: str) -> pd.DataFrame:
|
8 |
+
api = HfApi()
|
9 |
+
if search_type == "Models":
|
10 |
+
results = api.list_models(search=query)
|
11 |
+
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads} for model in results]
|
12 |
+
elif search_type == "Datasets":
|
13 |
+
results = api.list_datasets(search=query)
|
14 |
+
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads} for dataset in results]
|
15 |
+
elif search_type == "Spaces":
|
16 |
+
results = api.list_spaces(search=query)
|
17 |
+
data = [{"id": space.id, "author": space.author} for space in results]
|
18 |
+
else:
|
19 |
+
data = []
|
20 |
+
return pd.DataFrame(data)
|
21 |
+
|
22 |
+
def open_url(row):
|
23 |
+
if row is not None and not row.empty:
|
24 |
+
url = f"https://huggingface.co/{row.iloc[0]['id']}"
|
25 |
+
return f'<a href="{url}" target="_blank">{url}</a>'
|
26 |
+
else:
|
27 |
+
return ""
|
28 |
+
|
29 |
+
def load_metadata(row, search_type):
|
30 |
+
if row is not None and not row.empty:
|
31 |
+
item_id = row.iloc[0]['id']
|
32 |
+
|
33 |
+
if search_type == "Models":
|
34 |
+
try:
|
35 |
+
card = ModelCard.load(item_id)
|
36 |
+
return card
|
37 |
+
except Exception as e:
|
38 |
+
return f"Error loading model card: {str(e)}"
|
39 |
+
elif search_type == "Datasets":
|
40 |
+
api = HfApi()
|
41 |
+
metadata = api.dataset_info(item_id)
|
42 |
+
return str(metadata)
|
43 |
+
elif search_type == "Spaces":
|
44 |
+
api = HfApi()
|
45 |
+
metadata = api.space_info(item_id)
|
46 |
+
return str(metadata)
|
47 |
+
else:
|
48 |
+
return ""
|
49 |
+
else:
|
50 |
+
return ""
|
51 |
+
|
52 |
+
def SwarmyTime(data: List[Dict]) -> Dict:
|
53 |
+
"""
|
54 |
+
Aggregates all content from the given data.
|
55 |
+
|
56 |
+
:param data: List of dictionaries containing the search results
|
57 |
+
:return: Dictionary with aggregated content
|
58 |
+
"""
|
59 |
+
aggregated = {
|
60 |
+
"total_items": len(data),
|
61 |
+
"unique_authors": set(),
|
62 |
+
"total_downloads": 0,
|
63 |
+
"item_types": {"Models": 0, "Datasets": 0, "Spaces": 0}
|
64 |
+
}
|
65 |
+
|
66 |
+
for item in data:
|
67 |
+
aggregated["unique_authors"].add(item.get("author", "Unknown"))
|
68 |
+
aggregated["total_downloads"] += item.get("downloads", 0)
|
69 |
+
|
70 |
+
if "modelId" in item:
|
71 |
+
aggregated["item_types"]["Models"] += 1
|
72 |
+
elif "dataset" in item.get("id", ""):
|
73 |
+
aggregated["item_types"]["Datasets"] += 1
|
74 |
+
else:
|
75 |
+
aggregated["item_types"]["Spaces"] += 1
|
76 |
+
|
77 |
+
aggregated["unique_authors"] = len(aggregated["unique_authors"])
|
78 |
+
|
79 |
+
return aggregated
|
80 |
+
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown("## Search the Hugging Face Hub")
|
83 |
+
with gr.Row():
|
84 |
+
search_query = gr.Textbox(label="Search Query")
|
85 |
+
search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models")
|
86 |
+
search_button = gr.Button("Search")
|
87 |
+
results_df = gr.DataFrame(label="Search Results", wrap=True, interactive=True)
|
88 |
+
url_output = gr.HTML(label="URL")
|
89 |
+
metadata_output = gr.Textbox(label="Metadata", lines=10)
|
90 |
+
aggregated_output = gr.JSON(label="Aggregated Content")
|
91 |
+
|
92 |
+
def search_and_aggregate(query, search_type):
|
93 |
+
df = search_hub(query, search_type)
|
94 |
+
aggregated = SwarmyTime(df.to_dict('records'))
|
95 |
+
return df, aggregated
|
96 |
+
|
97 |
+
search_button.click(search_and_aggregate, inputs=[search_query, search_type], outputs=[results_df, aggregated_output])
|
98 |
+
results_df.select(open_url, outputs=[url_output])
|
99 |
+
results_df.select(load_metadata, inputs=[results_df, search_type], outputs=[metadata_output])
|
100 |
+
|
101 |
+
demo.launch(debug=True)
|