Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict
|
2 |
+
import httpx
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from huggingface_hub import HfApi, ModelCard, snapshot_download, login
|
6 |
+
import base64
|
7 |
+
import io
|
8 |
+
import zipfile
|
9 |
+
import asyncio
|
10 |
+
import aiohttp
|
11 |
+
from pathlib import Path
|
12 |
+
import emoji
|
13 |
+
import tempfile
|
14 |
+
import shutil
|
15 |
+
import os
|
16 |
+
|
17 |
+
# Search Terms
|
18 |
+
example_search_terms = [
|
19 |
+
{"id": "gpt-3", "emoji": "🤖"},
|
20 |
+
{"id": "stable-diffusion", "emoji": "🎨"},
|
21 |
+
{"id": "whisper", "emoji": "🗣️"},
|
22 |
+
{"id": "bert", "emoji": "📖"},
|
23 |
+
{"id": "resnet", "emoji": "🖼️"}
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
# Initialize HuggingFace with access token
|
28 |
+
def init_huggingface(token: str):
|
29 |
+
"""Initialize HuggingFace with access token."""
|
30 |
+
try:
|
31 |
+
login(token=token)
|
32 |
+
return True
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error logging in: {str(e)}")
|
35 |
+
return False
|
36 |
+
|
37 |
+
def format_link(item: Dict, number: int, search_type: str) -> str:
|
38 |
+
"""Format a link for display in the UI."""
|
39 |
+
link = item['link']
|
40 |
+
readme_link = f"{link}/blob/main/README.md"
|
41 |
+
title = f"{number}. {item['id']}"
|
42 |
+
|
43 |
+
metadata = f"Author: {item['author']}"
|
44 |
+
if 'downloads' in item:
|
45 |
+
metadata += f", Downloads: {item['downloads']}"
|
46 |
+
|
47 |
+
html = f"""
|
48 |
+
<div style="margin-bottom: 10px;">
|
49 |
+
<strong>{title}</strong><br>
|
50 |
+
<a href="{link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View {search_type[:-1]}</a> |
|
51 |
+
<a href="{readme_link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View README</a><br>
|
52 |
+
<small>{metadata}</small>
|
53 |
+
</div>
|
54 |
+
"""
|
55 |
+
return html
|
56 |
+
|
57 |
+
def display_results(df: pd.DataFrame):
|
58 |
+
"""Display search results in HTML format."""
|
59 |
+
if df is not None and not df.empty:
|
60 |
+
html = "<div style='max-height: 400px; overflow-y: auto;'>"
|
61 |
+
for _, row in df.iterrows():
|
62 |
+
html += row['formatted_link']
|
63 |
+
html += "</div>"
|
64 |
+
return html
|
65 |
+
else:
|
66 |
+
return "<p>No results found.</p>"
|
67 |
+
|
68 |
+
def SwarmyTime(data: List[Dict]) -> Dict:
|
69 |
+
"""Aggregates all content from the given data."""
|
70 |
+
aggregated = {
|
71 |
+
"total_items": len(data),
|
72 |
+
"unique_authors": set(),
|
73 |
+
"total_downloads": 0,
|
74 |
+
"item_types": {"Models": 0, "Datasets": 0, "Spaces": 0}
|
75 |
+
}
|
76 |
+
|
77 |
+
for item in data:
|
78 |
+
aggregated["unique_authors"].add(item.get("author", "Unknown"))
|
79 |
+
aggregated["total_downloads"] += item.get("downloads", 0)
|
80 |
+
|
81 |
+
if "modelId" in item:
|
82 |
+
aggregated["item_types"]["Models"] += 1
|
83 |
+
elif "dataset" in item.get("id", ""):
|
84 |
+
aggregated["item_types"]["Datasets"] += 1
|
85 |
+
else:
|
86 |
+
aggregated["item_types"]["Spaces"] += 1
|
87 |
+
|
88 |
+
aggregated["unique_authors"] = len(aggregated["unique_authors"])
|
89 |
+
return aggregated
|
90 |
+
|
91 |
+
def search_and_aggregate(query, search_type, token, example_term):
|
92 |
+
if example_term:
|
93 |
+
query = example_term.split(" ")[1] # Extract the user ID from the button label
|
94 |
+
df = search_hub(query, search_type, token)
|
95 |
+
data = df.to_dict('records')
|
96 |
+
aggregated = SwarmyTime(data)
|
97 |
+
html_results = display_results(df)
|
98 |
+
return [
|
99 |
+
html_results,
|
100 |
+
"Status: Ready to download",
|
101 |
+
"",
|
102 |
+
aggregated,
|
103 |
+
search_type,
|
104 |
+
data
|
105 |
+
]
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def search_hub(query: str, search_type: str, token: str = None) -> pd.DataFrame:
|
110 |
+
"""Search the Hugging Face Hub for models, datasets, or spaces."""
|
111 |
+
api = HfApi(token=token)
|
112 |
+
if search_type == "Models":
|
113 |
+
results = api.list_models(search=query)
|
114 |
+
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results]
|
115 |
+
elif search_type == "Datasets":
|
116 |
+
results = api.list_datasets(search=query)
|
117 |
+
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results]
|
118 |
+
elif search_type == "Spaces":
|
119 |
+
results = api.list_spaces(search=query)
|
120 |
+
data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results]
|
121 |
+
else:
|
122 |
+
data = []
|
123 |
+
|
124 |
+
for i, item in enumerate(data, 1):
|
125 |
+
item['number'] = i
|
126 |
+
item['formatted_link'] = format_link(item, i, search_type)
|
127 |
+
|
128 |
+
return pd.DataFrame(data)
|
129 |
+
|
130 |
+
async def download_readme(session: aiohttp.ClientSession, item: Dict, token: str) -> tuple[str, str]:
|
131 |
+
"""Download README.md file for a given item."""
|
132 |
+
item_id = item['id']
|
133 |
+
|
134 |
+
# Different base URLs for different repository types
|
135 |
+
if 'datasets' in item['link']:
|
136 |
+
raw_url = f"https://huggingface.co/datasets/{item_id}/raw/main/README.md"
|
137 |
+
alt_url = f"https://huggingface.co/datasets/{item_id}/raw/master/README.md"
|
138 |
+
elif 'spaces' in item['link']:
|
139 |
+
raw_url = f"https://huggingface.co/spaces/{item_id}/raw/main/README.md"
|
140 |
+
alt_url = f"https://huggingface.co/spaces/{item_id}/raw/master/README.md"
|
141 |
+
else: # Models
|
142 |
+
raw_url = f"https://huggingface.co/{item_id}/raw/main/README.md"
|
143 |
+
alt_url = f"https://huggingface.co/{item_id}/raw/master/README.md"
|
144 |
+
|
145 |
+
headers = {"Authorization": f"Bearer {token}"} if token else {}
|
146 |
+
|
147 |
+
try:
|
148 |
+
# Try main branch first
|
149 |
+
async with session.get(raw_url, headers=headers) as response:
|
150 |
+
if response.status == 200:
|
151 |
+
content = await response.text()
|
152 |
+
return item_id.replace('/', '_'), content
|
153 |
+
|
154 |
+
# If main branch fails, try master branch
|
155 |
+
if response.status in [401, 404]:
|
156 |
+
async with session.get(alt_url, headers=headers) as alt_response:
|
157 |
+
if alt_response.status == 200:
|
158 |
+
content = await alt_response.text()
|
159 |
+
return item_id.replace('/', '_'), content
|
160 |
+
|
161 |
+
# If both attempts fail, return error message
|
162 |
+
error_msg = f"# Error downloading README for {item_id}\n"
|
163 |
+
if response.status == 401:
|
164 |
+
error_msg += "Authentication required. Please provide a valid HuggingFace token."
|
165 |
+
else:
|
166 |
+
error_msg += f"Status code: {response.status}"
|
167 |
+
return item_id.replace('/', '_'), error_msg
|
168 |
+
|
169 |
+
except Exception as e:
|
170 |
+
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nError: {str(e)}"
|
171 |
+
|
172 |
+
async def download_all_readmes(data: List[Dict], token: str) -> tuple[str, str]:
|
173 |
+
"""Download all README files and create a zip archive."""
|
174 |
+
if not data:
|
175 |
+
return "", "No results to download"
|
176 |
+
|
177 |
+
zip_buffer = io.BytesIO()
|
178 |
+
status_message = "Downloading READMEs..."
|
179 |
+
failed_downloads = []
|
180 |
+
|
181 |
+
async with aiohttp.ClientSession() as session:
|
182 |
+
tasks = [download_readme(session, item, token) for item in data]
|
183 |
+
results = await asyncio.gather(*tasks)
|
184 |
+
|
185 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
186 |
+
for filename, content in results:
|
187 |
+
if "Error downloading README" in content:
|
188 |
+
failed_downloads.append(filename)
|
189 |
+
zip_file.writestr(f"{filename}.md", content)
|
190 |
+
|
191 |
+
zip_buffer.seek(0)
|
192 |
+
base64_zip = base64.b64encode(zip_buffer.getvalue()).decode()
|
193 |
+
|
194 |
+
status = "READMEs ready for download!"
|
195 |
+
if failed_downloads:
|
196 |
+
status += f" (Failed to download {len(failed_downloads)} READMEs)"
|
197 |
+
|
198 |
+
download_link = f"""
|
199 |
+
<div style="margin-top: 10px;">
|
200 |
+
<a href="data:application/zip;base64,{base64_zip}"
|
201 |
+
download="readmes.zip"
|
202 |
+
style="display: inline-block; padding: 10px 20px;
|
203 |
+
background-color: #4CAF50; color: white;
|
204 |
+
text-decoration: none; border-radius: 5px;">
|
205 |
+
📥 Download READMEs Archive
|
206 |
+
</a>
|
207 |
+
{f'<p style="color: #ff6b6b; margin-top: 10px;">Note: Some READMEs could not be downloaded. Please check the zip file for details.</p>' if failed_downloads else ''}
|
208 |
+
</div>
|
209 |
+
"""
|
210 |
+
|
211 |
+
return download_link, status
|
212 |
+
|
213 |
+
def download_repository(repo_id: str, repo_type: str, temp_dir: str, token: str) -> str:
|
214 |
+
"""Download a single repository."""
|
215 |
+
try:
|
216 |
+
repo_path = snapshot_download(
|
217 |
+
repo_id=repo_id,
|
218 |
+
repo_type=repo_type.lower()[:-1], # Remove 's' from 'Models'/'Datasets'/'Spaces'
|
219 |
+
local_dir=os.path.join(temp_dir, repo_id.replace('/', '_')),
|
220 |
+
ignore_patterns=["*.bin", "*.pt", "*.pth", "*.ckpt", "*.safetensors"], # Ignore large binary files
|
221 |
+
token=token
|
222 |
+
)
|
223 |
+
return repo_path
|
224 |
+
except Exception as e:
|
225 |
+
print(f"Error downloading {repo_id}: {str(e)}")
|
226 |
+
return None
|
227 |
+
|
228 |
+
def create_repo_zip(data: List[Dict], search_type: str, token: str) -> tuple[str, str]:
|
229 |
+
"""Download repositories and create a zip archive."""
|
230 |
+
if not data:
|
231 |
+
return "", "No repositories to download"
|
232 |
+
|
233 |
+
# Create temporary directory
|
234 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
235 |
+
successful_downloads = []
|
236 |
+
|
237 |
+
# Download each repository
|
238 |
+
for item in data:
|
239 |
+
repo_path = download_repository(item['id'], search_type, temp_dir, token)
|
240 |
+
if repo_path:
|
241 |
+
successful_downloads.append(repo_path)
|
242 |
+
|
243 |
+
if not successful_downloads:
|
244 |
+
return "", "No repositories were successfully downloaded"
|
245 |
+
|
246 |
+
# Create zip file in memory
|
247 |
+
zip_buffer = io.BytesIO()
|
248 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
249 |
+
for repo_path in successful_downloads:
|
250 |
+
repo_name = os.path.basename(repo_path)
|
251 |
+
for root, _, files in os.walk(repo_path):
|
252 |
+
for file in files:
|
253 |
+
file_path = os.path.join(root, file)
|
254 |
+
arcname = os.path.join(repo_name, os.path.relpath(file_path, repo_path))
|
255 |
+
zip_file.write(file_path, arcname)
|
256 |
+
|
257 |
+
# Convert to base64
|
258 |
+
zip_buffer.seek(0)
|
259 |
+
base64_zip = base64.b64encode(zip_buffer.getvalue()).decode()
|
260 |
+
|
261 |
+
download_link = f"""
|
262 |
+
<div style="margin-top: 10px;">
|
263 |
+
<a href="data:application/zip;base64,{base64_zip}"
|
264 |
+
download="repositories.zip"
|
265 |
+
style="display: inline-block; padding: 10px 20px;
|
266 |
+
background-color: #4CAF50; color: white;
|
267 |
+
text-decoration: none; border-radius: 5px;">
|
268 |
+
📥 Download Repositories Archive
|
269 |
+
</a>
|
270 |
+
</div>
|
271 |
+
"""
|
272 |
+
|
273 |
+
return download_link, f"Successfully downloaded {len(successful_downloads)} repositories"
|
274 |
+
|
275 |
+
# Gradio Interface
|
276 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
277 |
+
gr.Markdown("""
|
278 |
+
# Search the Hugging Face Hub
|
279 |
+
Search and download models, datasets, and spaces from Hugging Face.
|
280 |
+
""")
|
281 |
+
|
282 |
+
with gr.Row():
|
283 |
+
example_search_buttons = gr.ButtonGroup(
|
284 |
+
choices=[f"{term['emoji']} {term['id']}" for term in example_search_terms],
|
285 |
+
label="Example Search Terms",
|
286 |
+
value=None
|
287 |
+
)
|
288 |
+
|
289 |
+
with gr.Row():
|
290 |
+
with gr.Column(scale=3):
|
291 |
+
hf_token = gr.Textbox(
|
292 |
+
label="HuggingFace Access Token (optional)",
|
293 |
+
type="password",
|
294 |
+
placeholder="Enter your HuggingFace access token...",
|
295 |
+
)
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
with gr.Column(scale=3):
|
299 |
+
search_query = gr.Textbox(
|
300 |
+
label="Search Query",
|
301 |
+
value="awacke1",
|
302 |
+
placeholder="Enter search term..."
|
303 |
+
)
|
304 |
+
with gr.Column(scale=2):
|
305 |
+
search_type = gr.Radio(
|
306 |
+
["Models", "Datasets", "Spaces"],
|
307 |
+
label="Search Type",
|
308 |
+
value="Models",
|
309 |
+
container=True
|
310 |
+
)
|
311 |
+
with gr.Column(scale=1):
|
312 |
+
search_button = gr.Button("🔍 Search", variant="primary", scale=1)
|
313 |
+
|
314 |
+
with gr.Row(variant="panel"):
|
315 |
+
with gr.Column(scale=1):
|
316 |
+
gr.Markdown("### Download Options")
|
317 |
+
with gr.Row():
|
318 |
+
download_readme_button = gr.Button(
|
319 |
+
"📚 Download READMEs",
|
320 |
+
variant="secondary",
|
321 |
+
)
|
322 |
+
download_repo_button = gr.Button(
|
323 |
+
"📦 Download Repositories",
|
324 |
+
variant="secondary",
|
325 |
+
)
|
326 |
+
download_status = gr.Markdown("Status: Ready to download", label="Status")
|
327 |
+
download_area = gr.HTML("", label="Download Link")
|
328 |
+
|
329 |
+
with gr.Row():
|
330 |
+
with gr.Column(scale=2):
|
331 |
+
results_html = gr.HTML(label="Search Results")
|
332 |
+
with gr.Column(scale=1):
|
333 |
+
aggregated_output = gr.JSON(label="Search Statistics")
|
334 |
+
|
335 |
+
search_type_state = gr.State("")
|
336 |
+
current_results = gr.State([])
|
337 |
+
|
338 |
+
def search_and_aggregate(query, search_type, token):
|
339 |
+
df = search_hub(query, search_type, token)
|
340 |
+
data = df.to_dict('records')
|
341 |
+
aggregated = SwarmyTime(data)
|
342 |
+
html_results = display_results(df)
|
343 |
+
return [
|
344 |
+
html_results,
|
345 |
+
"Status: Ready to download",
|
346 |
+
"",
|
347 |
+
aggregated,
|
348 |
+
search_type,
|
349 |
+
data
|
350 |
+
]
|
351 |
+
async def handle_readme_download(data, token):
|
352 |
+
if data:
|
353 |
+
download_link, status = await download_all_readmes(data, token)
|
354 |
+
return [f"Status: {status}", download_link]
|
355 |
+
else:
|
356 |
+
return ["Status: No results to download", ""]
|
357 |
+
|
358 |
+
def handle_repo_download(data, search_type, token):
|
359 |
+
if data:
|
360 |
+
download_link, status = create_repo_zip(data, search_type, token)
|
361 |
+
return [f"Status: {status}", download_link]
|
362 |
+
else:
|
363 |
+
return ["Status: No results to download", ""]
|
364 |
+
|
365 |
+
#async def handle_readme_download(data, token):
|
366 |
+
# if not data:
|
367 |
+
# return ["Status: No results to download", ""]
|
368 |
+
# download_link, status = await download_all_readmes(data, token)
|
369 |
+
# return [f"Status: {status}", download_link]
|
370 |
+
|
371 |
+
#def handle_repo_download(data, search_type, token):
|
372 |
+
# if not data:
|
373 |
+
# return ["Status: No results to download", ""]
|
374 |
+
# download_link, status = create_repo_zip(data, search_type, token)
|
375 |
+
# return [f"Status: {status}", download_link]
|
376 |
+
|
377 |
+
#search_button.click(
|
378 |
+
# search_and_aggregate,
|
379 |
+
# inputs=[search_query, search_type, hf_token],
|
380 |
+
# outputs=[
|
381 |
+
# results_html,
|
382 |
+
# download_status,
|
383 |
+
# download_area,
|
384 |
+
# aggregated_output,
|
385 |
+
# search_type_state,
|
386 |
+
# current_results
|
387 |
+
# ]
|
388 |
+
#)
|
389 |
+
|
390 |
+
|
391 |
+
search_button.click(
|
392 |
+
search_and_aggregate,
|
393 |
+
inputs=[search_query, search_type, hf_token, example_search_buttons],
|
394 |
+
outputs=[
|
395 |
+
results_html,
|
396 |
+
download_status,
|
397 |
+
download_area,
|
398 |
+
aggregated_output,
|
399 |
+
search_type_state,
|
400 |
+
current_results
|
401 |
+
],
|
402 |
+
call_after=lambda data: [handle_readme_download(data[-1], hf_token.value), handle_repo_download(data[-1], search_type.value, hf_token.value)]
|
403 |
+
)
|
404 |
+
|
405 |
+
download_readme_button.click(
|
406 |
+
handle_readme_download,
|
407 |
+
inputs=[current_results, hf_token],
|
408 |
+
outputs=[download_status, download_area]
|
409 |
+
)
|
410 |
+
|
411 |
+
download_repo_button.click(
|
412 |
+
handle_repo_download,
|
413 |
+
inputs=[current_results, search_type_state, hf_token],
|
414 |
+
outputs=[download_status, download_area]
|
415 |
+
)
|
416 |
+
|
417 |
+
demo.launch(debug=True)
|