|
from typing import List, Dict |
|
import httpx |
|
import gradio as gr |
|
import pandas as pd |
|
from huggingface_hub import HfApi, ModelCard |
|
|
|
def search_hub(query: str, search_type: str) -> pd.DataFrame: |
|
api = HfApi() |
|
if search_type == "Models": |
|
results = api.list_models(search=query) |
|
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads} for model in results] |
|
elif search_type == "Datasets": |
|
results = api.list_datasets(search=query) |
|
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads} for dataset in results] |
|
elif search_type == "Spaces": |
|
results = api.list_spaces(search=query) |
|
data = [{"id": space.id, "author": space.author} for space in results] |
|
else: |
|
data = [] |
|
return pd.DataFrame(data) |
|
|
|
def open_url(row): |
|
if row is not None and not row.empty: |
|
url = f"https://huggingface.co/{row.iloc[0]['id']}" |
|
return f'<a href="{url}" target="_blank">{url}</a>' |
|
else: |
|
return "" |
|
|
|
def load_metadata(row, search_type): |
|
if row is not None and not row.empty: |
|
item_id = row.iloc[0]['id'] |
|
|
|
if search_type == "Models": |
|
try: |
|
card = ModelCard.load(item_id) |
|
return card |
|
except Exception as e: |
|
return f"Error loading model card: {str(e)}" |
|
elif search_type == "Datasets": |
|
api = HfApi() |
|
metadata = api.dataset_info(item_id) |
|
return str(metadata) |
|
elif search_type == "Spaces": |
|
api = HfApi() |
|
metadata = api.space_info(item_id) |
|
return str(metadata) |
|
else: |
|
return "" |
|
else: |
|
return "" |
|
|
|
def SwarmyTime(data: List[Dict]) -> Dict: |
|
""" |
|
Aggregates all content from the given data. |
|
|
|
:param data: List of dictionaries containing the search results |
|
:return: Dictionary with aggregated content |
|
""" |
|
aggregated = { |
|
"total_items": len(data), |
|
"unique_authors": set(), |
|
"total_downloads": 0, |
|
"item_types": {"Models": 0, "Datasets": 0, "Spaces": 0} |
|
} |
|
|
|
for item in data: |
|
aggregated["unique_authors"].add(item.get("author", "Unknown")) |
|
aggregated["total_downloads"] += item.get("downloads", 0) |
|
|
|
if "modelId" in item: |
|
aggregated["item_types"]["Models"] += 1 |
|
elif "dataset" in item.get("id", ""): |
|
aggregated["item_types"]["Datasets"] += 1 |
|
else: |
|
aggregated["item_types"]["Spaces"] += 1 |
|
|
|
aggregated["unique_authors"] = len(aggregated["unique_authors"]) |
|
|
|
return aggregated |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Search the Hugging Face Hub") |
|
with gr.Row(): |
|
search_query = gr.Textbox(label="Search Query") |
|
search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models") |
|
search_button = gr.Button("Search") |
|
results_df = gr.DataFrame(label="Search Results", wrap=True, interactive=True) |
|
url_output = gr.HTML(label="URL") |
|
metadata_output = gr.Textbox(label="Metadata", lines=10) |
|
aggregated_output = gr.JSON(label="Aggregated Content") |
|
|
|
def search_and_aggregate(query, search_type): |
|
df = search_hub(query, search_type) |
|
aggregated = SwarmyTime(df.to_dict('records')) |
|
return df, aggregated |
|
|
|
search_button.click(search_and_aggregate, inputs=[search_query, search_type], outputs=[results_df, aggregated_output]) |
|
results_df.select(open_url, outputs=[url_output]) |
|
results_df.select(load_metadata, inputs=[results_df, search_type], outputs=[metadata_output]) |
|
|
|
demo.launch(debug=True) |