Models-Datasets-Spaces-Search-Hub / backup112424-app.py
awacke1's picture
Rename app.py to backup112424-app.py
7ab7b3a verified
raw
history blame
6.91 kB
from typing import List, Dict
import httpx
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, ModelCard
import base64
import io
import zipfile
import asyncio
import aiohttp
from pathlib import Path
import emoji
def search_hub(query: str, search_type: str) -> pd.DataFrame:
api = HfApi()
if search_type == "Models":
results = api.list_models(search=query)
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results]
elif search_type == "Datasets":
results = api.list_datasets(search=query)
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results]
elif search_type == "Spaces":
results = api.list_spaces(search=query)
data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results]
else:
data = []
for i, item in enumerate(data, 1):
item['number'] = i
item['formatted_link'] = format_link(item, i, search_type)
return pd.DataFrame(data)
def format_link(item: Dict, number: int, search_type: str) -> str:
link = item['link']
readme_link = f"{link}/blob/main/README.md"
title = f"{number}. {item['id']}"
metadata = f"Author: {item['author']}"
if 'downloads' in item:
metadata += f", Downloads: {item['downloads']}"
html = f"""
<div style="margin-bottom: 10px;">
<strong>{title}</strong><br>
<a href="{link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View {search_type[:-1]}</a> |
<a href="{readme_link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View README</a><br>
<small>{metadata}</small>
</div>
"""
return html
async def download_readme(session: aiohttp.ClientSession, item: Dict) -> tuple[str, str]:
"""Download README.md file for a given item."""
item_id = item['id']
raw_url = f"https://huggingface.co/{item_id}/raw/main/README.md"
try:
async with session.get(raw_url) as response:
if response.status == 200:
content = await response.text()
return item_id.replace('/', '_'), content
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nStatus code: {response.status}"
except Exception as e:
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nError: {str(e)}"
async def download_all_readmes(data: List[Dict]) -> tuple[str, str]:
"""Download all README files and create a zip archive."""
if not data:
return "", "No results to download"
zip_buffer = io.BytesIO()
status_message = "Downloading READMEs..."
async with aiohttp.ClientSession() as session:
tasks = [download_readme(session, item) for item in data]
results = await asyncio.gather(*tasks)
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
for filename, content in results:
zip_file.writestr(f"{filename}.md", content)
zip_buffer.seek(0)
base64_zip = base64.b64encode(zip_buffer.getvalue()).decode()
download_link = f"""
<div style="margin-top: 10px;">
<a href="data:application/zip;base64,{base64_zip}"
download="readmes.zip"
style="display: inline-block; padding: 10px 20px;
background-color: #4CAF50; color: white;
text-decoration: none; border-radius: 5px;">
📥 Download READMEs Archive
</a>
</div>
"""
return download_link, "READMEs ready for download!"
def display_results(df: pd.DataFrame):
if df is not None and not df.empty:
html = "<div style='max-height: 400px; overflow-y: auto;'>"
for _, row in df.iterrows():
html += row['formatted_link']
html += "</div>"
return html
else:
return "<p>No results found.</p>"
def SwarmyTime(data: List[Dict]) -> Dict:
"""Aggregates all content from the given data."""
aggregated = {
"total_items": len(data),
"unique_authors": set(),
"total_downloads": 0,
"item_types": {"Models": 0, "Datasets": 0, "Spaces": 0}
}
for item in data:
aggregated["unique_authors"].add(item.get("author", "Unknown"))
aggregated["total_downloads"] += item.get("downloads", 0)
if "modelId" in item:
aggregated["item_types"]["Models"] += 1
elif "dataset" in item.get("id", ""):
aggregated["item_types"]["Datasets"] += 1
else:
aggregated["item_types"]["Spaces"] += 1
aggregated["unique_authors"] = len(aggregated["unique_authors"])
return aggregated
with gr.Blocks() as demo:
gr.Markdown("## Search the Hugging Face Hub")
with gr.Row():
search_query = gr.Textbox(label="Search Query", value="awacke1")
search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models")
search_button = gr.Button("Search")
results_html = gr.HTML(label="Search Results")
download_button = gr.Button("📚 Download All READMEs", visible=False)
download_status = gr.Markdown("", label="Download Status")
download_area = gr.HTML("", label="Download Link")
metadata_output = gr.Textbox(label="Metadata", lines=10)
aggregated_output = gr.JSON(label="Aggregated Content")
current_results = gr.State([])
def search_and_aggregate(query, search_type):
df = search_hub(query, search_type)
data = df.to_dict('records')
aggregated = SwarmyTime(data)
html_results = display_results(df)
show_download = len(data) > 0
return [
html_results, # results_html
show_download, # download_button visible
"", # download_status
"", # download_area
aggregated, # aggregated_output
data # current_results
]
async def handle_download(data):
if not data:
return ["No results to download", ""]
download_link, status = await download_all_readmes(data)
return [status, download_link]
search_button.click(
search_and_aggregate,
inputs=[search_query, search_type],
outputs=[
results_html,
download_button,
download_status,
download_area,
aggregated_output,
current_results
]
)
download_button.click(
handle_download,
inputs=[current_results],
outputs=[download_status, download_area]
)
demo.launch(debug=True)