File size: 11,839 Bytes
2fb4bb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6ee18
2fb4bb5
 
 
 
 
 
 
 
6b6ee18
 
90a56f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb4bb5
8184a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb4bb5
90a56f9
2fb4bb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6ee18
2fb4bb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6ee18
 
 
 
 
 
2fb4bb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from typing import List, Dict
import httpx
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, ModelCard, snapshot_download, login
import base64
import io
import zipfile
import asyncio
import aiohttp
from pathlib import Path
import emoji
import tempfile
import shutil
import os

# Initialize HuggingFace with access token
def init_huggingface(token: str):
    """Initialize HuggingFace with access token."""
    try:
        login(token=token)
        return True
    except Exception as e:
        print(f"Error logging in: {str(e)}")
        return False

def format_link(item: Dict, number: int, search_type: str) -> str:
    """Format a link for display in the UI."""
    link = item['link']
    readme_link = f"{link}/blob/main/README.md"
    title = f"{number}. {item['id']}"
    
    metadata = f"Author: {item['author']}"
    if 'downloads' in item:
        metadata += f", Downloads: {item['downloads']}"
    
    html = f"""
    <div style="margin-bottom: 10px;">
        <strong>{title}</strong><br>
        <a href="{link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View {search_type[:-1]}</a> | 
        <a href="{readme_link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View README</a><br>
        <small>{metadata}</small>
    </div>
    """
    return html

def display_results(df: pd.DataFrame):
    """Display search results in HTML format."""
    if df is not None and not df.empty:
        html = "<div style='max-height: 400px; overflow-y: auto;'>"
        for _, row in df.iterrows():
            html += row['formatted_link']
        html += "</div>"
        return html
    else:
        return "<p>No results found.</p>"

def SwarmyTime(data: List[Dict]) -> Dict:
    """Aggregates all content from the given data."""
    aggregated = {
        "total_items": len(data),
        "unique_authors": set(),
        "total_downloads": 0,
        "item_types": {"Models": 0, "Datasets": 0, "Spaces": 0}
    }

    for item in data:
        aggregated["unique_authors"].add(item.get("author", "Unknown"))
        aggregated["total_downloads"] += item.get("downloads", 0)
        
        if "modelId" in item:
            aggregated["item_types"]["Models"] += 1
        elif "dataset" in item.get("id", ""):
            aggregated["item_types"]["Datasets"] += 1
        else:
            aggregated["item_types"]["Spaces"] += 1

    aggregated["unique_authors"] = len(aggregated["unique_authors"])
    return aggregated

def search_hub(query: str, search_type: str, token: str = None) -> pd.DataFrame:
    """Search the Hugging Face Hub for models, datasets, or spaces."""
    api = HfApi(token=token)
    if search_type == "Models":
        results = api.list_models(search=query)
        data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results]
    elif search_type == "Datasets":
        results = api.list_datasets(search=query)
        data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results]
    elif search_type == "Spaces":
        results = api.list_spaces(search=query)
        data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results]
    else:
        data = []
    
    for i, item in enumerate(data, 1):
        item['number'] = i
        item['formatted_link'] = format_link(item, i, search_type)
    
    return pd.DataFrame(data)

async def download_readme(session: aiohttp.ClientSession, item: Dict, token: str) -> tuple[str, str]:
    """Download README.md file for a given item."""
    item_id = item['id']
    raw_url = f"https://huggingface.co/{item_id}/raw/main/README.md"
    headers = {"Authorization": f"Bearer {token}"} if token else {}
    
    try:
        async with session.get(raw_url, headers=headers) as response:
            if response.status == 200:
                content = await response.text()
                return item_id.replace('/', '_'), content
            return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nStatus code: {response.status}"
    except Exception as e:
        return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nError: {str(e)}"

async def download_all_readmes(data: List[Dict], token: str) -> tuple[str, str]:
    """Download all README files and create a zip archive."""
    if not data:
        return "", "No results to download"
        
    zip_buffer = io.BytesIO()
    status_message = "Downloading READMEs..."
    
    async with aiohttp.ClientSession() as session:
        tasks = [download_readme(session, item, token) for item in data]
        results = await asyncio.gather(*tasks)
        
        with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
            for filename, content in results:
                zip_file.writestr(f"{filename}.md", content)
    
    zip_buffer.seek(0)
    base64_zip = base64.b64encode(zip_buffer.getvalue()).decode()
    
    download_link = f"""
    <div style="margin-top: 10px;">
        <a href="data:application/zip;base64,{base64_zip}" 
           download="readmes.zip" 
           style="display: inline-block; padding: 10px 20px; 
                  background-color: #4CAF50; color: white; 
                  text-decoration: none; border-radius: 5px;">
            📥 Download READMEs Archive
        </a>
    </div>
    """
    
    return download_link, "READMEs ready for download!"

def download_repository(repo_id: str, repo_type: str, temp_dir: str, token: str) -> str:
    """Download a single repository."""
    try:
        repo_path = snapshot_download(
            repo_id=repo_id,
            repo_type=repo_type.lower()[:-1],  # Remove 's' from 'Models'/'Datasets'/'Spaces'
            local_dir=os.path.join(temp_dir, repo_id.replace('/', '_')),
            ignore_patterns=["*.bin", "*.pt", "*.pth", "*.ckpt", "*.safetensors"],  # Ignore large binary files
            token=token
        )
        return repo_path
    except Exception as e:
        print(f"Error downloading {repo_id}: {str(e)}")
        return None

def create_repo_zip(data: List[Dict], search_type: str, token: str) -> tuple[str, str]:
    """Download repositories and create a zip archive."""
    if not data:
        return "", "No repositories to download"

    # Create temporary directory
    with tempfile.TemporaryDirectory() as temp_dir:
        successful_downloads = []
        
        # Download each repository
        for item in data:
            repo_path = download_repository(item['id'], search_type, temp_dir, token)
            if repo_path:
                successful_downloads.append(repo_path)
        
        if not successful_downloads:
            return "", "No repositories were successfully downloaded"
        
        # Create zip file in memory
        zip_buffer = io.BytesIO()
        with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
            for repo_path in successful_downloads:
                repo_name = os.path.basename(repo_path)
                for root, _, files in os.walk(repo_path):
                    for file in files:
                        file_path = os.path.join(root, file)
                        arcname = os.path.join(repo_name, os.path.relpath(file_path, repo_path))
                        zip_file.write(file_path, arcname)
        
        # Convert to base64
        zip_buffer.seek(0)
        base64_zip = base64.b64encode(zip_buffer.getvalue()).decode()
        
        download_link = f"""
        <div style="margin-top: 10px;">
            <a href="data:application/zip;base64,{base64_zip}" 
               download="repositories.zip" 
               style="display: inline-block; padding: 10px 20px; 
                      background-color: #4CAF50; color: white; 
                      text-decoration: none; border-radius: 5px;">
                📥 Download Repositories Archive
            </a>
        </div>
        """
        
        return download_link, f"Successfully downloaded {len(successful_downloads)} repositories"

# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # Search the Hugging Face Hub
    Search and download models, datasets, and spaces from Hugging Face.
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            hf_token = gr.Textbox(
                label="HuggingFace Access Token (optional)",
                type="password",
                placeholder="Enter your HuggingFace access token...",
            )
    
    with gr.Row():
        with gr.Column(scale=3):
            search_query = gr.Textbox(
                label="Search Query",
                value="awacke1",
                placeholder="Enter search term..."
            )
        with gr.Column(scale=2):
            search_type = gr.Radio(
                ["Models", "Datasets", "Spaces"],
                label="Search Type",
                value="Models",
                container=True
            )
        with gr.Column(scale=1):
            search_button = gr.Button("🔍 Search", variant="primary", scale=1)
    
    with gr.Row(variant="panel"):
        with gr.Column(scale=1):
            gr.Markdown("### Download Options")
            with gr.Row():
                download_readme_button = gr.Button(
                    "📚 Download READMEs",
                    variant="secondary",
                )
                download_repo_button = gr.Button(
                    "📦 Download Repositories",
                    variant="secondary",
                )
            download_status = gr.Markdown("Status: Ready to download", label="Status")
            download_area = gr.HTML("", label="Download Link")
    
    with gr.Row():
        with gr.Column(scale=2):
            results_html = gr.HTML(label="Search Results")
        with gr.Column(scale=1):
            aggregated_output = gr.JSON(label="Search Statistics")
    
    search_type_state = gr.State("")
    current_results = gr.State([])

    def search_and_aggregate(query, search_type, token):
        df = search_hub(query, search_type, token)
        data = df.to_dict('records')
        aggregated = SwarmyTime(data)
        html_results = display_results(df)
        return [
            html_results,
            "Status: Ready to download",
            "",
            aggregated,
            search_type,
            data
        ]

    async def handle_readme_download(data, token):
        if not data:
            return ["Status: No results to download", ""]
        download_link, status = await download_all_readmes(data, token)
        return [f"Status: {status}", download_link]

    def handle_repo_download(data, search_type, token):
        if not data:
            return ["Status: No results to download", ""]
        download_link, status = create_repo_zip(data, search_type, token)
        return [f"Status: {status}", download_link]

    search_button.click(
        search_and_aggregate,
        inputs=[search_query, search_type, hf_token],
        outputs=[
            results_html,
            download_status,
            download_area,
            aggregated_output,
            search_type_state,
            current_results
        ]
    )

    download_readme_button.click(
        handle_readme_download,
        inputs=[current_results, hf_token],
        outputs=[download_status, download_area]
    )

    download_repo_button.click(
        handle_repo_download,
        inputs=[current_results, search_type_state, hf_token],
        outputs=[download_status, download_area]
    )

demo.launch(debug=True)