import os from pathlib import Path import typer from datasets import load_dataset from dotenv import load_dotenv from rich import print from utils import http_get, http_post if Path(".env").is_file(): load_dotenv(".env") HF_TOKEN = os.getenv("HF_TOKEN") AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME") AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API") if "staging" in AUTOTRAIN_BACKEND_API: AUTOTRAIN_ENV = "staging" else: AUTOTRAIN_ENV = "prod" def main(): logs_df = load_dataset("autoevaluate/evaluation-job-logs", use_auth_token=True, split="train").to_pandas() # Filter out legacy AutoTrain submissions prior to project approvals requirement projects_df = logs_df.copy()[(~logs_df["project_id"].isnull())] # Filter IDs for appropriate AutoTrain env (staging vs prod) projects_df = projects_df.copy().query(f"autotrain_env == '{AUTOTRAIN_ENV}'") projects_to_approve = projects_df["project_id"].astype(int).tolist() failed_approvals = [] print(f"🚀 Found {len(projects_to_approve)} evaluation projects to approve!") for project_id in projects_to_approve: print(f"Attempting to evaluate project ID {project_id} ...") try: project_info = http_get( path=f"/projects/{project_id}", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API, ).json() print(project_info) # Only start evaluation for projects with completed data processing (status=3) if project_info["status"] == 3 and project_info["training_status"] == "not_started": train_job_resp = http_post( path=f"/projects/{project_id}/start_training", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API, ).json() print(f"🤖 Project {project_id} approval response: {train_job_resp}") else: print(f"💪 Project {project_id} has already been evaluated. Skipping ...") except Exception as e: print(f"There was a problem obtaining the project info for project ID {project_id}") print(f"Error message: {e}") failed_approvals.append(project_id) pass if len(failed_approvals) > 0: print(f"🚨 Failed to approve {len(failed_approvals)} projects: {failed_approvals}") if __name__ == "__main__": typer.run(main)