Spaces:
Runtime error
Runtime error
Tristan Thrush
commited on
Commit
·
9bb22fc
1
Parent(s):
7f35e51
start of select any metric feature
Browse files- app.py +56 -3
- requirements.txt +1 -0
app.py
CHANGED
@@ -4,9 +4,11 @@ from pathlib import Path
|
|
4 |
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
-
from datasets import get_dataset_config_names
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import list_datasets
|
|
|
|
|
10 |
|
11 |
from utils import (get_compatible_models, get_key, get_metadata, http_get,
|
12 |
http_post)
|
@@ -30,8 +32,50 @@ TASK_TO_ID = {
|
|
30 |
"summarization": 8,
|
31 |
}
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
supported_tasks = list(TASK_TO_ID.keys())
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
###########
|
37 |
### APP ###
|
@@ -242,7 +286,16 @@ with st.expander("Advanced configuration"):
|
|
242 |
with st.form(key="form"):
|
243 |
|
244 |
compatible_models = get_compatible_models(selected_task, selected_dataset)
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
247 |
print("Selected models:", selected_models)
|
248 |
submit_button = st.form_submit_button("Make submission")
|
@@ -264,7 +317,7 @@ with st.form(key="form"):
|
|
264 |
"disk_size_gb": 150,
|
265 |
},
|
266 |
"evaluation": {
|
267 |
-
"metrics":
|
268 |
"models": selected_models,
|
269 |
},
|
270 |
},
|
|
|
4 |
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
+
from datasets import get_dataset_config_names, list_metrics, load_metric
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import list_datasets
|
10 |
+
from tqdm import tqdm
|
11 |
+
import inspect
|
12 |
|
13 |
from utils import (get_compatible_models, get_key, get_metadata, http_get,
|
14 |
http_post)
|
|
|
32 |
"summarization": 8,
|
33 |
}
|
34 |
|
35 |
+
TASK_TO_DEFAULT_METRICS = {
|
36 |
+
"binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
|
37 |
+
"multi_class_classification": ["f1_micro", "f1_macro", "f1_weighted", "precision_macro", "precision_micro", "precision_weighted", "recall_macro", "recall_micro", "recall_weighted", "accuracy"],
|
38 |
+
"entity_extraction": ["precision", "recall", "f1", "accuracy"],
|
39 |
+
"extractive_question_answering": [],
|
40 |
+
"translation": ["sacrebleu", "gen_len"],
|
41 |
+
"summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum", "gen_len"],
|
42 |
+
}
|
43 |
+
|
44 |
supported_tasks = list(TASK_TO_ID.keys())
|
45 |
|
46 |
+
@st.cache
|
47 |
+
def get_supported_metrics():
|
48 |
+
metrics = list_metrics()
|
49 |
+
supported_metrics = {}
|
50 |
+
for metric in tqdm(metrics):
|
51 |
+
try:
|
52 |
+
metric_func = load_metric(metric)
|
53 |
+
except Exception as e:
|
54 |
+
print(e)
|
55 |
+
print("Skipping the following metric, which cannot load:", metric)
|
56 |
+
|
57 |
+
argspec = inspect.getfullargspec(metric_func.compute)
|
58 |
+
if (
|
59 |
+
"references" in argspec.kwonlyargs
|
60 |
+
and "predictions" in argspec.kwonlyargs
|
61 |
+
):
|
62 |
+
# We require that "references" and "predictions" are arguments
|
63 |
+
# to the metric function. We also require that the other arguments
|
64 |
+
# besides "references" and "predictions" have defaults and so do not
|
65 |
+
# need to be specified explicitly.
|
66 |
+
defaults = True
|
67 |
+
for key, value in argspec.kwonlydefaults.items():
|
68 |
+
if key not in ("references", "predictions"):
|
69 |
+
if value is None:
|
70 |
+
defaults = False
|
71 |
+
break
|
72 |
+
|
73 |
+
if defaults:
|
74 |
+
supported_metrics[metric] = argspec.kwonlydefaults
|
75 |
+
return supported_metrics
|
76 |
+
|
77 |
+
supported_metrics = get_supported_metrics()
|
78 |
+
|
79 |
|
80 |
###########
|
81 |
### APP ###
|
|
|
286 |
with st.form(key="form"):
|
287 |
|
288 |
compatible_models = get_compatible_models(selected_task, selected_dataset)
|
289 |
+
st.markdown("The following metrics will be computed")
|
290 |
+
html_string = " ".join(["<div style=\"padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left\"><div style=\"background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;padding-left:5px;color:white\">" + metric + "</div></div>" for metric in TASK_TO_DEFAULT_METRICS[selected_task]])
|
291 |
+
st.markdown(html_string, unsafe_allow_html=True)
|
292 |
+
selected_metrics = st.multiselect(
|
293 |
+
"(Optional) Select additional metrics",
|
294 |
+
list(set(supported_metrics.keys()) - set(TASK_TO_DEFAULT_METRICS[selected_task])),
|
295 |
+
)
|
296 |
+
for metric_name in selected_metrics:
|
297 |
+
argument_string = ", ".join(["-".join(key, value) for key, value in supported_metrics[metric].items()])
|
298 |
+
st.info(f"Note! The arguments for {metric_name} are: {argument_string}")
|
299 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
300 |
print("Selected models:", selected_models)
|
301 |
submit_button = st.form_submit_button("Make submission")
|
|
|
317 |
"disk_size_gb": 150,
|
318 |
},
|
319 |
"evaluation": {
|
320 |
+
"metrics": selected_metrics,
|
321 |
"models": selected_models,
|
322 |
},
|
323 |
},
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
huggingface-hub==0.4.0
|
2 |
python-dotenv
|
3 |
streamlit==1.2.0
|
|
|
4 |
py7zr
|
|
|
1 |
huggingface-hub==0.4.0
|
2 |
python-dotenv
|
3 |
streamlit==1.2.0
|
4 |
+
datasets
|
5 |
py7zr
|