model-evaluator / app.py
lewtun's picture
lewtun HF staff
Refactor
eef70c0
raw
history blame
17.8 kB
import inspect
import os
import uuid
from pathlib import Path
import pandas as pd
import streamlit as st
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from evaluate import load
from huggingface_hub import list_datasets, list_metrics
from tqdm import tqdm
from evaluation import filter_evaluated_models
from utils import (
commit_evaluation_log,
format_col_mapping,
get_compatible_models,
get_key,
get_metadata,
http_get,
http_post,
)
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
TASK_TO_ID = {
"binary_classification": 1,
"multi_class_classification": 2,
# "multi_label_classification": 3, # Not fully supported in AutoTrain
"entity_extraction": 4,
"extractive_question_answering": 5,
"translation": 6,
"summarization": 8,
}
TASK_TO_DEFAULT_METRICS = {
"binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
"multi_class_classification": [
"f1",
"precision",
"recall",
"accuracy",
],
"entity_extraction": ["precision", "recall", "f1", "accuracy"],
"extractive_question_answering": [],
"translation": ["sacrebleu"],
"summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum"],
}
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
@st.cache
def get_supported_metrics():
metrics = [metric.id for metric in list_metrics()]
supported_metrics = []
for metric in tqdm(metrics):
# TODO: this currently requires all metric dependencies to be installed
# in the same environment. Refactor to avoid needing to actually load
# the metric.
try:
print(f"INFO -- Attempting to load metric: {metric}")
metric_func = load(metric)
except Exception as e:
print(e)
print("WARNING -- Skipping the following metric, which cannot load:", metric)
continue
argspec = inspect.getfullargspec(metric_func.compute)
if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs:
# We require that "references" and "predictions" are arguments
# to the metric function. We also require that the other arguments
# besides "references" and "predictions" have defaults and so do not
# need to be specified explicitly.
defaults = True
for key, value in argspec.kwonlydefaults.items():
if key not in ("references", "predictions"):
if value is None:
defaults = False
break
if defaults:
supported_metrics.append(metric)
return supported_metrics
supported_metrics = get_supported_metrics()
#######
# APP #
#######
st.title("Evaluation on the Hub")
st.markdown(
"""
Welcome to Hugging Face's automatic model evaluator! This application allows
you to evaluate πŸ€— Transformers
[models](https://huggingface.co/models?library=transformers&sort=downloads)
across a wide variety of datasets on the Hub. Please select
the dataset and configuration below. The results of your evaluation will be
displayed on the [public
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
"""
)
all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
default_dataset = all_datasets[0]
if "dataset" in query_params:
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
default_dataset = query_params["dataset"][0]
selected_dataset = st.selectbox(
"Select a dataset",
all_datasets,
index=all_datasets.index(default_dataset),
help="""Datasets with metadata can be evaluated with 1-click. Check out the \
[documentation](https://huggingface.co/docs/hub/datasets-cards) to add \
evaluation metadata to a dataset.""",
)
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
metadata = get_metadata(selected_dataset)
print(f"INFO -- Dataset metadata: {metadata}")
if metadata is None:
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
with st.expander("Advanced configuration"):
# Select task
selected_task = st.selectbox(
"Select a task",
SUPPORTED_TASKS,
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
)
# Select config
configs = get_dataset_config_names(selected_dataset)
selected_config = st.selectbox("Select a config", configs)
# Select splits
splits_resp = http_get(
path="/splits",
domain=DATASETS_PREVIEW_API,
params={"dataset": selected_dataset},
)
if splits_resp.status_code == 200:
split_names = []
all_splits = splits_resp.json()
for split in all_splits["splits"]:
if split["config"] == selected_config:
split_names.append(split["split"])
if metadata is not None:
eval_split = metadata[0]["splits"].get("eval_split", None)
else:
eval_split = None
selected_split = st.selectbox(
"Select a split",
split_names,
index=split_names.index(eval_split) if eval_split is not None else 0,
)
# Select columns
rows_resp = http_get(
path="/rows",
domain=DATASETS_PREVIEW_API,
params={
"dataset": selected_dataset,
"config": selected_config,
"split": selected_split,
},
).json()
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
st.markdown("**Map your data columns**")
col1, col2 = st.columns(2)
# TODO: find a better way to layout these items
# TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
col_mapping = {}
if selected_task in ["binary_classification", "multi_class_classification"]:
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to classify",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain the labels you want to assign to the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "entity_extraction":
with col1:
st.markdown("`tokens` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`tags` column")
with col2:
tokens_col = st.selectbox(
"This column should contain the array of tokens",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
)
tags_col = st.selectbox(
"This column should contain the labels to associate to each part of the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0,
)
col_mapping[tokens_col] = "tokens"
col_mapping[tags_col] = "tags"
elif selected_task == "translation":
with col1:
st.markdown("`source` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to translate",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain an example translation of the source text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "source"
col_mapping[target_col] = "target"
elif selected_task == "summarization":
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to summarize",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain an example summarization of the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "extractive_question_answering":
if metadata is not None:
col_mapping = metadata[0]["col_mapping"]
# Hub YAML parser converts periods to hyphens, so we remap them here
col_mapping = format_col_mapping(col_mapping)
with col1:
st.markdown("`context` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`question` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.answer_start` column")
with col2:
context_col = st.selectbox(
"This column should contain the question's context",
col_names,
index=col_names.index(get_key(col_mapping, "context")) if metadata is not None else 0,
)
question_col = st.selectbox(
"This column should contain the question to be answered, given the context",
col_names,
index=col_names.index(get_key(col_mapping, "question")) if metadata is not None else 0,
)
answers_text_col = st.selectbox(
"This column should contain example answers to the question, extracted from the context",
col_names,
index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0,
)
answers_start_col = st.selectbox(
"This column should contain the indices in the context of the first character of each answers.text",
col_names,
index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0,
)
col_mapping[context_col] = "context"
col_mapping[question_col] = "question"
col_mapping[answers_text_col] = "answers.text"
col_mapping[answers_start_col] = "answers.answer_start"
# Select metrics
st.markdown("**Select metrics**")
st.markdown("The following metrics will be computed")
html_string = " ".join(
[
'<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
+ '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
+ 'padding-left:5px;color:white">'
+ metric
+ "</div></div>"
for metric in TASK_TO_DEFAULT_METRICS[selected_task]
]
)
st.markdown(html_string, unsafe_allow_html=True)
selected_metrics = st.multiselect(
"(Optional) Select additional metrics",
list(set(supported_metrics) - set(TASK_TO_DEFAULT_METRICS[selected_task])),
)
st.info(
"""Note: user-selected metrics will be run with their default arguments. \
Check out the [available metrics](https://huggingface.co/metrics) for more details."""
)
with st.form(key="form"):
compatible_models = get_compatible_models(selected_task, [selected_dataset])
selected_models = st.multiselect(
"Select the models you wish to evaluate",
compatible_models,
help="""Don't see your model in this list? Add the dataset and task it was trained to the \
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
)
print("INFO -- Selected models before filter:", selected_models)
if len(selected_models) > 0:
selected_models = filter_evaluated_models(
selected_models,
selected_task,
selected_dataset,
selected_config,
selected_split,
)
print("INFO -- Selected models after filter:", selected_models)
submit_button = st.form_submit_button("Evaluate models πŸš€")
if submit_button:
if len(selected_models) > 0:
project_id = str(uuid.uuid4())[:8]
project_payload = {
"username": AUTOTRAIN_USERNAME,
"proj_name": f"eval-project-{project_id}",
"task": TASK_TO_ID[selected_task],
"config": {
"language": "en"
if selected_task != "translation"
else "en2de", # Need this dummy pair to enable translation
"max_models": 5,
"instance": {
"provider": "aws",
"instance_type": "ml.g4dn.4xlarge",
"max_runtime_seconds": 172800,
"num_instances": 1,
"disk_size_gb": 150,
},
"evaluation": {
"metrics": selected_metrics,
"models": selected_models,
},
},
}
print(f"INFO -- Payload: {project_payload}")
project_json_resp = http_post(
path="/projects/create",
payload=project_payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
print(f"INFO -- Project creation response: {project_json_resp}")
if project_json_resp["created"]:
data_payload = {
"split": 4, # use "auto" split choice in AutoTrain
"col_mapping": col_mapping,
"load_config": {"max_size_bytes": 0, "shuffle": False},
}
data_json_resp = http_post(
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
payload=data_payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
params={
"type": "dataset",
"config_name": selected_config,
"split_name": selected_split,
},
).json()
print(f"INFO -- Dataset creation response: {data_json_resp}")
if data_json_resp["download_status"] == 1:
train_json_resp = http_get(
path=f"/projects/{project_json_resp['id']}/data/start_process",
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
print(f"INFO -- AutoTrain job response: {train_json_resp}")
if train_json_resp["success"]:
st.success(f"βœ… Successfully submitted evaluation job with project name {project_id}")
st.markdown(
f"""
Evaluation can take up to 1 hour to complete, so grab a β˜• or 🍡 while you wait:
πŸ“Š Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) \
to view the results from your submission
"""
)
print("INFO -- Pushing evaluation job logs to the Hub")
evaluation_log = {}
evaluation_log["payload"] = project_payload
evaluation_log["project_creation_response"] = project_json_resp
evaluation_log["dataset_creation_response"] = data_json_resp
evaluation_log["autotrain_job_response"] = train_json_resp
commit_evaluation_log(evaluation_log, hf_access_token=HF_TOKEN)
else:
st.error("πŸ™ˆ Oh no, there was an error submitting your evaluation job!")
else:
st.warning("⚠️ No models were selected for evaluation!")