Spaces:
Runtime error
Runtime error
File size: 2,094 Bytes
0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 544774d 0ba78e9 544774d 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import os
from pathlib import Path
import streamlit as st
from dotenv import load_dotenv
from utils import get_compatible_models, get_metadata, http_post
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
with st.form(key="form"):
dataset_name = st.selectbox("Select a dataset to evaluate on", ["lewtun/autoevaluate__emotion"])
# TODO: remove this step once we select real datasets
# Strip out original dataset name
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
# In general this will be a list of multiple configs => need to generalise logic here
metadata = get_metadata(dataset_name)
dataset_config = st.selectbox("Select the subset to evaluate on", [metadata[0]["config"]])
splits = metadata[0]["splits"]
split_names = list(splits.values())
eval_split = splits.get("eval_split", split_names[0])
selected_split = st.selectbox("Select the split to evaluate on", split_names, index=split_names.index(eval_split))
compatible_models = get_compatible_models(metadata[0]["task"], original_dataset_name)
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models, compatible_models[0])
submit_button = st.form_submit_button("Make Submission")
if submit_button:
for model in selected_models:
payload = {
"username": AUTOTRAIN_USERNAME,
"task": 1,
"model": model,
"col_mapping": {"sentence": "text", "label": "target"},
"split": selected_split,
"dataset": original_dataset_name,
"config": dataset_config,
}
json_resp = http_post(
path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
).json()
st.success(f"✅ Successfully submitted model {model} for evaluation with job ID {json_resp['id']}")
|